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Preface to First Edition

Biology is the study of living species. The historic origin of biology is descriptive in

nature, a classification and description of the various biological species. Modern biol-

ogy is far different and seeks to understand living phenomena on a molecular basis.

The incredible amount of information available and the databases of this information

are staggering, the most obvious example being the nucleotide sequence of the human

genome. In essence, biology has moved from a qualitative to a quantitative science.

Inevitably, this requires a theoretical framework and associated mathematics. Physi-

cal chemistry provides this framework for molecular structure and chemical reactions,

the components of all biological systems that ultimately must be understood.

Traditionally, physical chemistry has been a major training component for

chemists, but not for biologists. This has been attributed to the relatively sophisticated

mathematical underpinnings of rigorous physical chemistry. However, the concepts

of physical chemistry can be understood and applied to biology with a minimum of

mathematics.

This volume attempts to present physical chemistry in conceptual terms using

mathematics only at an upper level of elementary calculus, a level required for all

science students. Nevertheless, the approach is quantitative in nature, with explicit

calculations and numerical problems. Examples from biology are used to illustrate

the principles, and problems are appended at the end of each chapter. This book is

intended to serve as a one-semester introduction to physical chemistry for undergrad-

uate biology majors and as a refresher course for first-year graduate students. This

book combines two volumes published earlier, Thermodynamics and Kinetics for the
Biological Sciences and Spectroscopy for the Biological Sciences. These two books

have been integrated with some additions and modification. The most notable addition

is a chapter on the hydrodynamics of macromolecules. Hydrodynamics is the basis of

several important laboratory techniques used in molecular biology, and understand-

ing the underlying concepts will permit better use of the methods and development

of new methods.

We begin with a discussion of thermodynamics, a subject that provides a con-

venient framework for all equilibrium phenomena. This is followed by chemical

kinetics, the quantitative description of the time dependence of chemical reactions.

For both subjects, multiple applications to biology are presented. The concepts associ-

ated with spectroscopy and structure determination are then considered. These topics

deal with the molecular nature of matter and the techniques used to characterize

molecules and their interactions. The concluding section of the book includes the

important subjects of ligand binding to macromolecules, hydrodynamics, and mass

xv



xvi PREFACE TO FIRST EDITION

spectrometry. The coverage of this book represents the minimal knowledge that every

biologist should have to understand biological phenomenon in molecular terms (in my

opinion!).

I am indebted to my colleagues at Duke for their encouragement and assistance.

In particular, Professors Jane and David Richardson, Lorena Beese, Leonard Spicer,

Terrance Oas, Michael Fitzgerald, and Harvey Sage who have provided vital

expertise. A special thanks also goes to Darla Henderson who as a Wiley editor has

provided both encouragement and professional assistance in the preparation of this

volume. As always, my wife Judy has provided her much appreciated (and needed)

support.

Gordon G. Hammes

Duke University
Durham, NC, USA



Preface to Second Edition

The impetus for preparing the second edition was twofold. First, the material in the

first edition was brought up to date. Although the argument can be made that the prin-

ciples of physical chemistry are timeless, new applications continually appear. We

have tried to ensure that interested students will have access to the most recent devel-

opments in the areas covered in this book. Second, with the addition of a co-author, we

have significantly expanded and upgraded some of the theoretical aspects of this book.

The flavor of the first edition has been retained: students in the biological sciences

can still obtain a working knowledge of physical chemistry without utilizing advanced

calculus. However, the landscape has changed. Calculus, and even advanced calcu-

lus, is now routinely taught in high school so that many more college students have

an understanding of advanced calculus. Also research in the biological sciences now

includes many more applications of theory relative to ten years ago.

More specifically, five new chapters have been added. The first deals with some

of the advanced aspects of thermodynamics and makes use of multivariable calculus.

Two of the chapters discuss quantum mechanics in much more detail and at a higher

level than the first edition. The additions include a discussion of hydrogen tunnel-

ing, as well as a chapter on atomic and molecular electronic structure, with brief

treatments of Hartree-Fock and density functional theory. The last two new chapters

discuss statistical mechanics. One chapter deals with the fundamentals of the subject,

and the other discusses computer simulations, with an extensive treatment of molec-

ular dynamics. Finally, an appendix has been added to introduce the fundamentals of

electrochemistry.

As a result of these changes, the second edition contains more material than can

be covered in a one semester course. However, the instructor can pick and choose the

material to be included for such a course. In fact, this text is suitable for a traditional

two semester physical chemistry course. Although a few traditional subjects are not

covered, there is more than enough material for two semesters. We have intentionally

not designed this text to be encyclopedic in nature to make it more accessible to

students for self-study.

We are grateful to a number of people for their assistance in reviewing spe-

cific aspects of the book. These people include Professor Nicholas Winograd

(Pennsylvania State University), Professor Terrance Oas (Duke University), and

Professor Leonard Spicer (Duke University). We again want to thank Professors

Jane and David Richardson for the marvelous color plates which have been retained

from the first edition. Specials thanks are due to Dr. Joshua Layfield, who prepared

most of the figures for the new material in the second edition and provided valuable

xvii
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insights. We also want to acknowledge the support of our spouses, Judy and Peter,

who have provided much needed patience and encouragement in this father-daughter

endeavor.

Gordon G. Hammes

Duke University
Durham, NC, USA

Sharon Hammes-Schiffer

University of Illinois
Champaign, IL, USA
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CHAPTER 1

Heat, Work, and Energy

1.1 INTRODUCTION

Thermodynamics is deceptively simple or exceedingly complex, depending on how

you approach it. In this book, we will be concerned with the principles of thermo-

dynamics that are especially useful in thinking about biological phenomena. The

emphasis will be on concepts, with a minimum of mathematics. Perhaps an accu-

rate description might be rigor without rigor mortis. This may cause some squirming

in the graves of thermodynamic purists, but the objective is to provide a foundation

for researchers in experimental biology to use thermodynamics. This includes cell

biology, microbiology, molecular biology, and pharmacology, among others. A more

advanced treatment of some aspects of thermodynamics is presented in Chapter 4.

Excellent texts are available that present a more complete exposition of thermody-

namics (cf. Refs. 1–3).

In point of fact, thermodynamics can provide a useful way of thinking about

biological processes and is indispensable when considering molecular and cellular

mechanisms. For example, what reactions and coupled physiological processes are

possible? What are the allowed mechanisms involved in cell division or in protein

synthesis? What are the thermodynamic considerations that cause proteins, nucleic

acids, and membranes to assume their active structures? It is easy to postulate

biological mechanisms that are inconsistent with thermodynamic principles—but

just as easy to postulate those that are consistent. Consequently, no active researcher

in biology should be without a rudimentary knowledge of the principles of thermo-

dynamics. The ultimate goal of this exposition is to understand what determines

equilibrium in biological systems and how these equilibrium processes can be

coupled together to produce living systems, even though we recognize that living

organisms are not at equilibrium. Thermodynamics provides a unifying framework

for diverse systems in biology. Both a qualitative and a quantitative understanding

are important and will be developed.

The beauty of thermodynamics is that a relatively small number of postulates

can be used to develop the entire subject. Perhaps the most important part of this

development is to be very precise with regard to concepts and definitions, without

Physical Chemistry for the Biological Sciences, Second Edition.
Gordon G. Hammes and Sharon Hammes-Schiffer.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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4 HEAT, WORK, AND ENERGY

getting bogged down with mathematics. Thermodynamics is a macroscopic theory,

not molecular. As far as thermodynamics is concerned, molecules need not exist.

However, we will not be purists in this regard: If molecular descriptions are useful

for understanding or introducing concepts, they will be used. We will not hesitate

to give molecular descriptions of thermodynamic results, but we should recognize

that these interpretations are not inherent in thermodynamics itself. It is important to

note, nevertheless, that large collections of molecules are assumed so that their behav-

ior is governed by Boltzmann statistics; that is, the normal thermal energy distribution

is assumed. This is almost always the case in practice. Furthermore, thermodynamics

is concerned with time-independent systems, that is, systems at equilibrium. Thermo-

dynamics has been extended to nonequilibrium systems, but we will not be concerned

with the formal development of this subject here.

The first step is to define the system. A thermodynamic system is simply that part

of the universe in which we are interested. The only caveat is that the system must

be large relative to molecular dimensions. The system could be a room, it could be a

beaker, it could be a cell, etc. An open system can exchange energy and matter across

its boundaries, for example, a cell or a room with open doors and windows. A closed
system can exchange energy but not matter, for example, a closed room or box. An

isolated system can exchange neither energy nor matter, for example, the universe or,

approximately, a closed Dewar flask. We are free to select the system as we choose,

but it is very important that we specify what it is. This will be illustrated as we pro-

ceed. The properties of a system are any measurable quantities characterizing the

system. Properties are either extensive, proportional to the amount of material in the

system, or intensive, independent of the amount of material. Examples of extensive

properties are mass and volume. Examples of intensive properties are temperature,

pressure, and color.

1.2 TEMPERATURE

We are now ready to introduce three important concepts: temperature, heat, and work.

None of these are unfamiliar, but we must define them carefully so that they can be

used as we develop thermodynamics.

Temperature is an obvious concept, as it simply measures how hot or cold a sys-

tem is. We will not belabor its definition and will simply assert that thermodynamics

requires a unique temperature scale, namely, the Kelvin temperature scale. The Kelvin

temperature scale is related to the more conventional Celsius temperature scale by the

definition

TKelvin = TCelsius + 273.16 (1-1)

Although the temperature on the Celsius scale is referred to as “degrees Celsius,” by

convention degrees are not stated on the Kelvin scale. For example, a temperature of

100 ∘C is 373 K. (Thermodynamics is entirely logical—some of the conventions used

are not.) The definition of thermal equilibrium is very simple: When two systems are

at the same temperature, they are at thermal equilibrium.



1.3 HEAT 5

1.3 HEAT

Heat flows across the system boundary during a change in the state of the system

because a temperature difference exists between the system and its surroundings. We

know of many examples of heat: Some chemical reactions produce heat, such as the

combustion of gas and coal. Reactions in cells can produce heat. By convention, heat

flows from higher temperature to lower temperature. This fixes the sign of the heat

change. It is important to note that this is a convention and is not required by any

principle. For example, if the temperature of the surroundings decreases, heat flows

to the system, and the sign of the heat change is positive (+). A simple example will

illustrate this sign convention as well as the importance of defining the system under

consideration.

Consider two beakers of the same size filled with the same amount of water. In

one beaker, A, the temperature is 25 ∘C, and in the other beaker, B, the temperature is

75 ∘C. Let us now place the two beakers in thermal contact and allow them to reach

thermal equilibrium (50 ∘C). This situation is illustrated in Figure 1-1. If the system is

defined as A, the temperature of the system increases, so the heat change is positive.

If the system is defined as B, the temperature of the system decreases, so the heat

change is negative. If the system is defined as A and B, no heat flow occurs across the

boundary of the system, so the heat change is zero! This illustrates how important it

is to define the system before asking questions about what is occurring.

The heat change that occurs is proportional to the temperature difference between

the initial and final states of the system. This can be expressed mathematically as

q = C(Tf − Ti) (1-2)

where q is the heat change, the constant C is the heat capacity, Tf is the final tem-

perature, and Ti is the initial temperature. This relationship assumes that the heat

capacity is constant, independent of the temperature. In point of fact, the heat capac-

ity often changes as the temperature changes, so that a more precise definition puts

this relationship in differential form:

dq = C dT (1-3)

25°C

A

75°C 50°C 50°C

B A B

+

FIGURE 1-1. Illustration of the establishment of thermal equilibrium and importance of

defining the system carefully. Two identical vessels filled with the same amount of liquid, but

at different temperatures, are placed in contact and allowed to reach thermal equilibrium. A

discussion of this figure is given in the text.
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Note that the heat change and the heat capacity are extensive properties—the larger

the system, the larger the heat capacity and the heat change. Temperature, of course,

is an intensive property.

1.4 WORK

The definition of work is not as simple as that for heat. Many different forms of work

exist, for example, mechanical work, such as muscle action, and electrical work, such

as ions crossing charged membranes. We will use a rather artificial, but very general,

definition of work that is easily understood. Work is a quantity that can be transferred

across the system boundary and can always be converted to lifting and lowering a

weight in the surroundings. By convention, work done on a system is positive: this

corresponds to lowering the weight in the surroundings.

You may recall that mechanical work, w, is defined as the product of the force in

the direction of movement, Fx, times the distance moved, x, or in differential form

dw = Fxdx (1-4)

Therefore, the work to lower a weight is –mgh, where m is the mass, g is the gravita-

tional constant, and h is the distance the weight is lowered. This formula is generally

useful: for example, mgh is the work required for a person of mass m to walk up a hill

of height h. The work required to stretch a muscle could be calculated with Eq. (1-4)

if we knew the force required and the distance the muscle was stretched. Electrical

work, for example, is equal to –EIt, where E is the electromotive force, I is the cur-

rent, and t is the time. In living systems, membranes often have potentials (voltages)

across them. In this case, the work required for an ion to cross the membrane is –zFΨ,

where z is the charge of the ion, F is the Faraday (96,489 coulombs/mole), and Ψ is

the potential. A specific example is the cotransport of Na+ and K+, Na+ moving out

of the cell and K+ moving into the cell. A potential of −70 mV is established on the

inside so that the electrical work required to move a mole of K+ ions to the inside is

−(l) (96,489) (0.07) = −6750 Joules. (Ψ=Ψoutside – Ψinside = +70 mV.) The negative

sign means that work is done by the system.

Although not very biologically relevant, we will now consider in some detail

pressure–volume work, or P – V work. This type of work is conceptually easy to

understand, and calculations are relatively easy. The principles discussed are gener-

ally applicable to more complex systems, such as those encountered in biology. As

a simple example of P – V work, consider a piston filled with a gas, as pictured in

Figure 1-2. In this case, the force is equal to the external pressure, Pex, times the area,

A, of the piston face, so the infinitesimal work can be written as

dw = −PexAdx = −PexdV (1-5)

If the piston is lowered, work is done on the system and is positive, whereas if the

piston is raised, work is done by the system and is negative. Note that the work done
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x
Psys

Pex

System

FIGURE 1-2. Schematic representation of a piston pushing on the system. Pex is the external

pressure and Psys is the pressure of the system.

on or by the system by lowering or raising the piston depends on what the external

pressure is. Therefore, the work can have any value from 0 to ∞, depending on how

the process is done. This is a very important point: the work associated with a given

change in state depends on how the change in state is carried out.

The idea that work depends on how the process is carried out can be illustrated

further by considering the expansion and compression of a gas. The P – V isotherm

for an ideal gas is shown in Figure 1-3. An ideal gas is a gas that obeys the ideal

gas law, PV = nRT (n is the number of moles of gas and R is the gas constant). The

behavior of most gases at moderate pressures is well described by this relationship.

Let us consider the expansion of the gas from P1, V1 to P2, V2. If this expansion is

done with the external pressure equal to zero, that is, into a vacuum, the work is zero.

Clearly, this is the minimum amount of work that can be done for this change in state.

Let us now carry out the same expansion with the external pressure equal to P2. In

this case, the work is

w = −∫
V2

V1

PexdV = −P2(V2 − V1) (1-6)

which is the striped area under the P – V curve. The expansion can be broken into

stages; for example, first expand the gas with Pex = P3 followed by Pex = P2, as

shown in Figure 1-3. The work done by the system is then the sum of the two rectan-

gular areas under the curve. It is clear that as the number of stages is increased, the

magnitude of the work done increases. The maximum work that can be done by the

system is when the external pressure is set equal to the pressure of the system minus

a small differential pressure, dP, throughout the expansion. This can be expressed as

wmax = −∫
V2

V1

PdV (1-7)
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P

V

P3, V3

P1, V1

P2, V2

FIGURE 1-3. A P–V isotherm for an ideal gas. The narrow rectangle with both hatched and

open areas is the work done in going from P1, V1 to P3, V3 with an external pressure of P3. The

hatched area is the work done by the system in going from P1, V1 to P2, V2 with an external

pressure of P2. The maximum amount of work done by the system for this change in state is

the area under the curve between P1, V1 and P2, V2.

By a similar reasoning process, it can be shown that for a compression the minimum

work done on the system is

wmin = −∫
V1

V2

PdV (1-8)

This exercise illustrates two important points. First, it clearly shows that the work

associated with a change in state depends on how the change in state is carried out.

Second, it demonstrates the concept of a reversible path. When a change in state is

carried out such that the surroundings and the system are not at equilibrium only by

an infinitesimal amount, in this case dP, during the change in state, the process is

called reversible. The concept of reversibility is only an ideal—it cannot be achieved

in practice. Obviously, we cannot really carry out a change in state with only an

infinitesimal difference between the pressures of the system and surroundings. We

will find this concept very useful, nevertheless.

Now let us think about a cycle whereby an expansion is carried out followed by

a compression that returns the system back to its original state. If this is done as a

one-stage process in each case, the total work can be written as

wtotal = wexp + wcomp (1-9)

or

wtotal = −P2(V2 − V1) − P1(V1 − V2) (1-10)
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or

wtotal = (P1 − P2)(V2 − V1) > 0 (1-11)

In this case, net work has been done on the system. For a reversible process, how-

ever, the work associated with compression and expansion is

wexp = −∫
V2

V1

PdV (1-12)

and

wcomp = −∫
V1

V2

PdV (1-13)

so that the total work for the cycle is equal to zero. Indeed, for reversible cycles the

net work is always zero.

To summarize this discussion of the concept of work, the work done on or by the

system depends on how the change in state of the system occurs. In the real world,

changes in state always occur irreversibly, but we will find the concept of a reversible

change in state to be very useful.

Heat changes also depend on how the process is carried out. Generally, a subscript

is appended to q, for example, qP and qV for heat changes at constant pressure and

volume, respectively. As a case in point, the heat change at constant pressure is greater

than that at constant volume if the temperature of a gas is raised. This is because not

only must the temperature be raised, but the gas must also be expanded.

Although this discussion of gases seems far removed from biology, the concepts

and conclusions reached are quite general and can be applied to biological systems.

The only difference is that exact calculations are usually more difficult. It is useful

to consider why this is true. In the case of ideal gases, a simple equation of state is

known, PV = nRT, that is obeyed quite well by real gases under normal conditions.

This equation is valid because gas molecules, on average, are quite far apart and

their energetic interactions can be neglected. Collisions between gas molecules can

be approximated as billiard balls colliding. This situation obviously does not prevail

in liquids and solids where molecules are close together and the energetics of their

interactions cannot be neglected. Consequently, simple equations of state do not exist

for liquids and solids.

1.5 DEFINITION OF ENERGY

The first law of thermodynamics is basically a definition of the energy change associ-

ated with a change in state. It is based on the experimental observation that heat and

work can be interconverted. Probably the most elegant demonstration of this is the

experimental work of James Prescott Joule in the late 1800s. He carried out experi-

ments in which he measured the work necessary to turn a paddle wheel in water and

the concomitant rise in temperature of the water. With this rather primitive exper-

iment, he was able to calculate the conversion factor between work and heat with
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amazing accuracy, namely, to within 0.2%. The first law states that the energy change,

ΔE, associated with a change in state is

ΔE = q + w (1-14)

Furthermore, the energy change is the same regardless of how the change in state

is carried out. In this regard, energy clearly has quite different properties than heat

and work. This is true for both reversible and irreversible processes. Because of this

property, the energy (usually designated the internal energy in physical chemistry

textbooks) is called a state function. State functions are extremely important in ther-

modynamics, both conceptually and practically.

Obviously we cannot prove the first law, as it is a basic postulate of thermodynam-

ics. However, we can show that without this law events could occur that are contrary

to our experience. Assume, for example, that the energy change in going from state

1 to state 2 is greater than the negative of that for going from state 2 to 1 because the

changes in state are carried out differently. We could then cycle between these two

states and produce energy as each cycle is completed, essentially making a perpet-

ual motion machine. We know that such machines do not exist, consistent with the

first law. Another way of looking at this law is as a statement of the conservation of

energy.

It is important that thermodynamic variables are not just hypothetical—we must

be able to relate them to laboratory experience, that is, to measure them. Thermody-

namics is developed here for practical usage. Therefore, we must be able to relate the

concepts to what can be done in the laboratory. How can we measure energy changes?

If we only consider P – V work, the first law can be written as

ΔE = q − ∫
V2

V1

PexdV (1-15)

If the change in state is measured at constant volume, then

ΔE = qV (1-16)

At first glance, it may seem paradoxical that a state function, the energy change,

is equal to a quantity whose magnitude depends on how the change in state is carried

out, namely, the heat change. However, in this instance we have specified how the

change in state is to occur, namely, at constant volume. Therefore, if we measure

the heat change at constant volume associated with a change in state, we have also

measured the energy change.

Temperature is an especially important variable in biological systems. If the tem-

perature is constant during a change in state, the process is isothermal. On the other

hand, if the system is insulated so that no heat escapes or enters the system during

the change in state (q = 0), the process is adiabatic.
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1.6 ENTHALPY

Most experiments in the laboratory and in biological systems are done at constant

pressure, rather than at constant volume. At constant pressure,

ΔE = qP − P(V2 − V1) (1-17)

or

E2 − E1 = qP − P(V2 − V1) (1-18)

The heat change at constant pressure can be written as

qP = (E2 + PV2) − (E1 + PV1) (1-19)

This relationship can be simplified by defining a new state function, the enthalpy, H:

H = E + PV (1-20)

The enthalpy is obviously a state function since E, P, and V are state functions. The

heat change at constant pressure is then equal to the enthalpy change:

qP = ΔH = H2 − H1 (1-21)

For biological reactions and processes, we will usually be interested in the enthalpy

change rather than the energy change. It can be measured experimentally by deter-

mining the heat change at constant pressure.

As a simple example of how energy and enthalpy can be calculated, let us consider

the conversion of liquid water to steam at 100∘C and 1 atm, that is, boiling water:

H2O(𝓁, 1atm, 100∘C) → H2O(g, 1atm, 100∘C) (1-22)

The heat required for this process, ΔH (=qP), is 9.71 kilocalories/mol. What is ΔE
for this process? This can be calculated as follows:

ΔE = ΔH − Δ(PV) = ΔH − PΔV

ΔV = Vg − V𝓁 = 22.4 liters∕mol − 18.0 × 10−3 liters∕mol ≈ PVg ≈ RT

ΔE = ΔH − RT = 9710 − 2(373) = 8970 calories∕mol

Note that the Kelvin temperature must be used in thermodynamic calculations and

that ΔH is significantly greater than ΔE.

Let us do a similar calculation for the melting of ice into liquid water

H2O(s, 273K, 1atm) → H2O(𝓁, 273K, 1atm) (1-23)
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In this case, the measured heat change,ΔH (=qP), is 1.44 kcal/mol. The calculation

of ΔE parallels the previous calculation.

ΔE = ΔH − PΔV

ΔV = V𝓁 − Vs ≈ 18.0ml∕mol − 19.6ml∕mol ≈ −1.6ml∕mol

PΔV ≈ −1.6mlatm = −0.04cal

ΔE = 1440 + 0.04 = 1440 cal∕mol

In this case, ΔE and ΔH are essentially the same. In general, they do not differ greatly

in condensed media, but the differences can be substantial in the gas phase.

The two most common units for energy are the calorie and the joule (J). (One calo-

rie equals 4.184 J.) The official MKS unit is the joule, but many research publications

use the calorie. We will use both in this text, in order to familiarize the student with

both units.

1.7 STANDARD STATES

Only changes in energy states can be measured. Therefore, it is arbitrary what we

set as the zero for the energy scale. As a matter of convenience, a common zero has

been set for both the energy and the enthalpy. Elements in their stablest forms at 25∘C
(298 K) and 1 atm are assigned an enthalpy of zero. This is called a standard state
and is usually written as Ho

298
. The superscript means 1 atm and the subscript is the

temperature in Kelvin.

As an example of how this concept is used, consider the formation of carbon tetra-

chloride from its elements:

C (graphite) + 2Cl2(g) → CCl4(𝓁)

ΔH = Ho
298(CCl4)

− Ho
298(C) − 2Ho

298(Cl2)

ΔH = Ho
298(CCl4)

(1-24)

The quantity Ho
298(CCI4)

is called the heat of formation of carbon tetrachloride. Tables

of heats of formation are available for hundreds of compounds and are useful in cal-

culating the enthalpy changes associated with chemical reactions (cf. Refs. 4, 5).

In the case of substances of biological interest in solutions, the definitions of stan-

dard states and heats of formation are a bit more complex. In addition to pressure and

temperature, other factors must be considered such as pH, salt concentration, metal

ion concentration, etc. A universal definition has not been established. In practice,

it is best to use heats of formation under a defined set of conditions and likewise to

define the standard state as these conditions. Tables of heats of formation for some

compounds of biological interest are given in Appendix 4 (6). A prime is often added

to the symbol for these heats of formation (Ho′
f
) to indicate the unusual nature of the
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standard state. We will not make that distinction here, but it is essential that a consis-

tent standard state is used when making thermodynamic calculations for biological

systems.

A useful way of looking at chemical reactions is as algebraic equations. A charac-

teristic enthalpy can be assigned to each product and reactant. Consider the “reaction”

aA + bB ⇌ cC + dD (1-25)

For this reaction, ΔH = Hproducts – Hreactants, or

ΔH = dHD + cHC − aHA − bHB

where the Hi are molar enthalpies. At 298 K and 1 atm, the molar enthalpies of the

elements are zero, whereas for compounds, the molar enthalpies are equal to the heats

of formation, which are tabulated. Before we apply these considerations to biolog-

ical reactions, a brief digression will be made to discuss how heats of reactions are

determined experimentally.

1.8 CALORIMETRY

The area of science concerned with the measurement of heat changes associated with

chemical reactions is designated as calorimetry. Only a brief introduction is given

here, but it is important to relate the theoretical concepts to laboratory experiments.

To begin this discussion, we will return to our earlier discussion of heat changes and

the heat capacity, Eq. (1-3). Since the heat change depends on how the change in state

is carried out, we must be more precise in defining the heat capacity. The two most

common conditions are constant volume and constant pressure. The heat changes in

these cases can be written as

dqV = dE = CVdT (1-26)

dqP = dH = CPdT (1-27)

A more exact mathematical treatment of these definitions would make use of par-

tial derivatives, but we will avoid this complexity by using subscripts to indicate what

is held constant. These equations can be integrated to give

ΔE = ∫
T2

T1

CVdT (1-28)

ΔH = ∫
T2

T1

CPdT (1-29)

Thus, heat changes can readily be measured if the heat capacity is known. The heat

capacity of a substance can be determined by adding a known amount of heat to the
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substance and determining the resulting increase in temperature. The known amount

of heat is usually added electrically since this permits very precise measurement.

(Recall that the electrical heat is I2R, where I is the current and R is the resistance

of the heating element.) If heat is added repeatedly in small increments over a large

temperature range, the temperature dependence of the heat capacity can be deter-

mined. Tabulations of heat capacities are available and are usually presented with the

temperature dependence described as a power series:

CP = a + bT + cT2 + · · · (1-30)

where a, b, c,… are constants determined by experiment.

For biological systems, two types of calorimetry are commonly carried out—batch

calorimetry and scanning calorimetry. In batch calorimetry, the reactants are mixed

together and the ensuing temperature rise (or decrease) is measured. A simple exper-

imental setup is depicted in Figure 1-4, where the calorimeter is a Dewar flask and

the temperature increase is measured by using a thermocouple or thermometer.

For example, if we wished to measure the heat change for the hydrolysis of adeno-

sine 5′-triphosphate (ATP),

ATP + H2O ⇌ ADP + Pi (1-31)

a solution of known ATP concentration would be put in the Dewar at a defined pH,

metal ion concentration, buffer, etc. The reaction would be initiated by adding a small

amount of adenosine triphosphatase (ATPase), an enzyme that efficiently catalyzes

the hydrolysis, and the subsequent temperature rise is measured. The enthalpy of

reaction can be calculated from the relationship

Thermometer

ATPase

ATP

FIGURE 1-4. Schematic representation of a simple batch calorimeter. The insulated vessel

is filled with a solution of ATP in a buffer containing salt and Mg2+. The hydrolysis of ATP

is initiated by the addition of the ATPase enzyme and the subsequent rise in temperature is

measured.
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ΔH = CPΔT (1-32)

The heat capacity of the system is calculated by putting a known amount of heat

into the system through an electrical heater and measuring the temperature rise of

the system. The enthalpy change calculated is for the number of moles of ATP in the

system. Usually, the experimental result is reported as a molar enthalpy, that is, the

enthalpy change for a mole of ATP being hydrolyzed. This result can be obtained

by dividing the observed enthalpy change by the moles of ATP hydrolyzed. Actual

calorimeters are much more sophisticated than this primitive experimental setup. The

calorimeter is well insulated, mixing is carried out very carefully, and very precise

temperature measurements are made with a thermocouple. The enthalpy changes for

many biological reactions have been measured, but unfortunately this information is

not conveniently tabulated in a single source. However, many enthalpies of reaction

can be derived from the heats of formation in the table in Appendix 4.

Scanning calorimetry is a quite different experiment and measures the heat capac-

ity as a function of temperature. In these experiments, a known amount of heat is

added to the system through electrical heating and the resulting temperature rise is

measured. Very small amounts of heat are used, so the temperature changes are typ-

ically very small. This process is repeated automatically so that the temperature of

the system slowly rises. The heat capacity of the system is calculated for each heat

increment as qP/ΔT and the data are presented as a plot of CP versus T.
This method has been used, for example, to study protein unfolding and denatu-

ration. Proteins unfold as the temperature is raised, and denaturation usually occurs

over a very narrow temperature range. This is illustrated schematically in Figure 1-5,

where the fraction of denatured protein, fD, is plotted versus the temperature along

with the corresponding plot of heat capacity, CP, versus temperature.

As shown in Figure 1-5, the plot of heat capacity versus temperature is a smooth,

slowly rising curve for the solvent. With the protein present, a peak in the curve occurs

1.0

0.0

(a)

fD

T

Solvent

ΔH=ʃcPdT

(b)

Cp

T

FIGURE 1-5. Schematic representation of the denaturation of a protein and the resulting

change in heat capacity, CP. In (a), the fraction of denatured protein, fD, is shown as a function

of temperature, T. In (b), the heat capacity, as measured by scanning calorimetry, is shown as a

function of temperature. The lower curve is the heat capacity of the solvent. The hatched area

is the excess heat capacity change due to the protein denaturing and is equal to ΔH for the

unfolding.



16 HEAT, WORK, AND ENERGY

ΔH1 + ΔH2=
ʃcPdT

1.0

0.0

CP

T

Solvent

FIGURE 1-6. Schematic representation of a calorimeter scan in which the denaturation occurs

in two steps. The hatched area permits the sum of the enthalpy changes to be determined, and

the individual enthalpies of the unfolding reactions can be determined by a detailed analysis.

As in Figure 1-5, CP is the measured heat capacity and T is the temperature.

as the protein is denatured. The enthalpy change associated with denaturation is the

area under the peak

(
striped area = ∫ CPdT

)
. In some cases, the protein denatu-

ration may occur in multiple stages, in which case more than one peak can be seen

in the heat capacity plot. This is shown schematically in Figure 1-6 for a two-stage

unfolding process.

The enthalpies associated with protein unfolding are often interpreted in molecular

terms such as hydrogen bonds, electrostatic interactions, and hydrophobic interac-

tions. It should be borne in mind that these interpretations are not inherent in thermo-

dynamic quantities, which do not explicitly give information at the molecular level.

Consequently, such interpretations should be scrutinized very critically.

1.9 REACTION ENTHALPIES

We now return to a consideration of reaction enthalpies. Because the enthalpy is a

state function, it can be added and subtracted for a sequence of reactions—it does not

matter how the reaction occurs or in what order. In this regard, chemical reactions

can be considered as algebraic equations. For example, consider the reaction cycle

below:

ΔH1

ΔH3

ΔH2 ΔH4

A B

C D
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If these reactions are written sequentially, it can readily be seen how the enthalpies

are related.

A → C ΔH2

C → D ΔH3

D → B ΔH4

A → B ΔH1 = ΔH2 + ΔH3 + ΔH4

This ability to relate enthalpies of reaction in reaction cycles in an additive fashion

is often called Hess’s law, although it really is derived from thermodynamic principles

as discussed. We will find that this “law” is extremely useful, as it allows determina-

tion of the enthalpy of reaction without studying a reaction directly if a sequence of

reactions is known that can be added to give the desired reaction.

As an illustration, we will calculate the enthalpy of reaction for the transfer of

a phosphoryl group from ATP to glucose, a very important physiological reaction

catalyzed by the enzyme hexokinase.

Glucose + ATP ⇌ ADP + Glucose-6-Phosphate (1-33)

The standard enthalpy changes for the hydrolysis of these four compounds are

given in Table 1-1. These data are for very specific conditions: T = 298 K, P = 1 atm,

pH = 7.0, pMg = 3, and an ionic strength of 0.25 M. The ionic strength is a measure

of the salt concentration that takes into account the presence of both monovalent and

divalent ions (= 1

2

∑
ciz

2
i , where ci is the concentration of each ion, zi is its charge,

and the sum is over all of the ions present). The enthalpy change for the hexokinase

reaction can easily be calculated from these data:

G + Pi ⇌ G6P + H2O ΔHo
298

= 0.5kJ∕mol

ATP + H2O ⇌ ADP + Pi ΔHo
298

= −30.9kJ∕mol

G + ATP ⇌ G6P + ADP ΔHo
298

= −30.4kJ∕mol

The ability to calculate thermodynamic quantities for biochemical reactions that

have not yet been studied is very useful. Even if data are not available to deal with the

TABLE 1-1. Standard Enthalpy Changes of Hydrolysis

Reaction ΔHo
298

(kJ∕mol)

ATP + H2O(𝓁) ⇌ ADP + Pi −30.9

ADP + H2O(𝓁) ⇌ AMP + Pi −28.9

AMP + H2O(𝓁) ⇌ A + Pi −1.2

G6P + H2O(𝓁) ⇌ G + Pi −0.5
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reaction of specific interest, very often data are available for closely related reactions.

Appendix 5 contains a tabulation of ΔHo
298

for some biochemical reactions.

The enthalpy change associated with the hexokinase reaction could also be derived

from the heats of formation in the table in Appendix 4:

ΔH = Ho
f,ADP

+ Ho
f,G6P

− Ho
f,ATP

− Ho
f,G

ΔH = −2000.2 − 2279.1 + 2981.8 + 1267.1 = −30.4kJ∕mol

In point of fact, the heats of formation are usually derived from measured heats of

reaction as these are the primary experimental data.

A source of potential confusion is the practice of reporting enthalpies of reaction

as “per mole.” There is no ambiguity for the hexokinase reaction as written above.

However, in many cases, the stoichiometric coefficients for reactants and products

differ. For example, the reaction catalyzed by the enzyme myokinase is

2ADP ⇌ ATP + AMP (1-34)

Even though 2 moles of ADP are used, the reaction enthalpy is referred to as “per

mole.” The reaction enthalpy is always given as “per mole of reaction as it is written.”

It is important, therefore, that the equation for the reaction under consideration be

explicitly stated. The myokinase reaction could be written as

ADP ⇌
1

2
ATP + 1

2
AMP (1-35)

In this case, the reaction enthalpy per mole would be one-half of that reported for Eq.

(1-34).

1.10 TEMPERATURE DEPENDENCE OF THE REACTION ENTHALPY

In principle, the enthalpy changes as the pressure and temperature change. We will not

worry about the dependence of the enthalpy on pressure, as it is usually very small for

reactions in condensed phases. The temperature dependence of the enthalpy is given

by Eq. (1-27). This can be used directly to determine the temperature dependence

of reaction enthalpies. If we assume the standard state enthalpy is known for each

reactant, then the temperature dependence of the enthalpy for each reactant, i, is

HT ,i = Ho
298,i + ∫

T

298

CP,idT (1-36)

If we apply this relationship to the reaction enthalpy for the generalized reaction of

Eq. (1-25), we obtain the following:

ΔHT = cHT ,C + dHT ,D − aHT ,A − bHT ,B

ΔHT = ΔHo
298

+ ∫
T

298

ΔCPdT
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with

ΔHo
298

= cHo
298,C + dHo

298,D − aHo
298,A − bHo

298,B

and

ΔCP = cCP,C + dCP,D − aCP,A − bCP,B

More generally,

ΔHT = ΔHT0
+ ∫

T

T0

ΔCPdT (1-37)

Equation (1-37) is known as Kirchhoff’s law. It can also be stated in differential form:

dΔH∕dT = ΔCP (1-38)

It is important to remember that this discussion of the temperature dependence of the

reaction enthalpy assumes that the pressure is constant.

The conclusion of these considerations of reaction enthalpies is that available

tabulations are often sufficient to calculate the reaction enthalpy of many biologi-

cal reactions. Moreover, if this is carried out at a standard temperature, the reaction

enthalpy at other temperatures can be calculated if appropriate information about

the heat capacities is known or estimated. For most chemical reactions of biological

interest, the temperature dependence of the reaction enthalpy is small. In contrast,

for processes such as protein folding and unfolding, the temperature dependence is

often significant and must be taken into account in data analysis and thermodynamic

calculations. This will be discussed further in Chapter 3.

The first law of thermodynamics, namely, the definition of energy and its con-

servation, is obviously of great importance in understanding the nature of chemical

reactions. As we shall see, however, the first law is not sufficient to understand what

determines chemical equilibria.
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PROBLEMS

1-1. When a gas expands rapidly through a valve, you often feel the valve get colder.

This is an adiabatic expansion (q = 0). Calculate the decrease in temperature of

1.0 mol of ideal gas as it is expanded from 0.20 to 1.00 liters under the condi-

tions given subsequently. Assume a constant volume molar heat capacity, CV,

of
3

2
R. Note that the energy, E, of an ideal gas depends only on the temperature:

it is independent of the volume of the system.

a. The expansion is irreversible with an external pressure of 1 atm and an initial

temperature of 300 K.

b. The expansion is reversible with an initial temperature of 300 K.

c. Calculate ΔE for the changes in state described in parts A and B.

d. Assume that the expansion is carried out isothermally at 300 K, rather than

adiabatically. Calculate the work done if the expansion is carried out irre-

versibly with an external pressure of 1.0 atm.

e. Calculate the work done if the isothermal expansion is carried out reversibly.

f. Calculate q and ΔE for the changes in state described in parts D and E.

1-2. .a. Calculate the enthalpy change for the conversion of glucose [C6H12O6(s)]

and oxygen [O2(g)] to CO2(aq) and H2O(𝓁) under standard conditions. The

standard enthalpies of formation of glucose(s), CO2(aq), and H2O(𝓁) are

−304.3, −98.7, and −68.3 kcal/mol, respectively.

b. When organisms metabolize glucose, approximately 50% of the energy

available is utilized for chemical and mechanical work. Assume that 25%

of the total energy from eating 1 mole of glucose can be utilized to climb a

mountain. How high a mountain can a 70 kg person climb?

1-3. Calculate the enthalpy change for the oxidation of pyruvic acid to acetic acid

under standard conditions.

2 CH3COCOOH(𝓁) + O2(g) → 2 CH3COOH(𝓁) + 2 CO2(g)

The heats of combustion of pyruvic acid and acetic acid under standard condi-

tions are −279 kcal/mol and −207 kcal/mol, respectively. Heats of combustion

are determined by reacting pyruvic or acetic acid with O2(g) to give H2O(𝓁)
and CO2(g). Hint: First write balanced chemical equations for the combustion

processes.

1-4. Calculate the amount of water (in liters) that would have to be vaporized at

40∘C (approximately body temperature) to expend the 2.5 × 106 calories of

heat generated by a person in one day (commonly called sweating). The heat

of vaporization of water at this temperature is 574 cal/g. We normally do not

sweat that much. What is wrong with this calculation? If 1% of the energy

produced as heat could be utilized as mechanical work, how large a weight

could be lifted 1 meter?
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1-5. .a. One hundred milliliters of 0.200 M ATP is mixed with an ATPase in a Dewar

at 298 K, 1 atm, pH 7.0, pMg 3.0, and 0.25 M ionic strength. The temper-

ature of the solution increases 1.48 K. What is ΔH∘ for the hydrolysis of

ATP to adenosine 5′-diphosphate (ADP) and phosphate? Assume that the

heat capacity of the system is 418 J/K.

b. The hydrolysis reaction can be written as

ATP + H2O ⇌ ADP + Pi

Under the same conditions, the hydrolysis of ADP

ADP + H2O ⇌ AMP + Pi

has a heat of reaction, ΔH∘, of −28.9 kJ/mol. Under the same conditions,

calculate ΔH∘ for the adenylate kinase reaction:

2ADP ⇌ AMP + ATP

1-6. The alcohol dehydrogenase reaction

NAD + Ethanol ⇌ NADH + Acetaldehyde

removes ethanol from the blood. Use the enthalpies of formation in Appendix

4 to calculate ΔH∘ for this reaction. If 10.0 g of ethanol (a generous martini)

is completely converted to acetaldehyde by this reaction, how much heat is

produced or consumed?





CHAPTER 2

Entropy and Gibbs Energy

2.1 INTRODUCTION

At the outset, we indicated that the primary objective of our discussion of thermo-

dynamics is to understand chemical equilibrium in thermodynamic terms. On the

basis of our discussion thus far, one possible conclusion is that chemical equilibria

are governed by energy considerations and that the system will always proceed to

the lowest energy state. This idea can be discarded quite quickly, as we know that

some spontaneous reactions produce heat and some require heat. For example, the

hydrolysis of ATP releases heat, ΔHo
298

= −30.9 kJ∕mol, whereas ATP and AMP

are formed when ADP is mixed with myokinase, yet ΔHo
298

= +2.0 kJ∕mol under

identical conditions. The conversion of liquids to gases requires heat, that is, ΔH is

positive, even at temperatures above the boiling point. Clearly, the lowest energy state

is not necessarily the most stable state.

What factor is missing? (At this point, traditional treatments of thermodynamics

launch into a discussion of heat engines, a topic we will avoid.) The missing ingredi-

ent is the consideration of the probability of a given state. As a very simple illustration,

consider three balls of equal size that are numbered 1, 2, and 3. These balls can be

arranged sequentially in six different ways:

123 132 213 231 312 321

The energy state of all of these arrangements is the same, yet it is obvious that the

probability of the balls being in sequence (123) is 1/6, whereas the probability of the

balls being out of sequence is 5/6. In other words, the probability of a disordered state

is much greater than the probability of an ordered state because a larger number of

arrangements of the balls exists in the disordered state.

Molecular examples of this phenomenon can readily be found. A gas expands

spontaneously into a vacuum even though the energy state of the gas does not

change. This occurs because the larger volume has more positions available for

molecules, so a greater number of arrangements, or more technically microstates,
of molecules are possible. Clearly, probability considerations are not sufficient by
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themselves. If this were the case, the stable state of matter would always be a gas.

We know that solids and liquids are stable under appropriate conditions because

they are energetically favored; that is, interactions between atoms and molecules

result in a lower energy state. The real situation must involve a balance between

energy and probability. This is a qualitative statement of what determines the

equilibrium state of a system, but we will be able to be much more quantitative than

this.

The second law states that disordered states are more probable than ordered states.

This is done by defining a new state function, entropy, which is a measure of the dis-

order (or probability) of a state. Thermodynamics does not require this interpretation

of the entropy, which is quasi-molecular. However, this is a much more intuitive way

of understanding entropy than utilizing the traditional concept of heat engines. The

more disordered a state, or the larger the number of available microstates, the higher

the entropy. We already can see a glimmer of how the equilibrium state might be

determined. At constant entropy, the energy should be minimized, whereas at con-

stant energy, the entropy should be maximized. We will return to this topic a little

later. First, we will define the entropy quantitatively.

2.2 STATEMENT OF THE SECOND LAW

A more formal statement of the second law is to define a new state function, the

entropy, S, by the equation

dS =
dqrev

T
(2-1)

or

ΔS = ∫
dqrev

T
(2-2)

The temperature scale in this definition is Kelvin. This definition is not as straightfor-

ward as that for the energy. Note that this definition requires a reversible heat change,

qrev or dqrev, yet entropy is a state function. At first glance, this seems quite paradox-

ical. The meaning of this is that the entropy change must be calculated by finding a

reversible path. However, all reversible paths give the same entropy change, and the

calculated entropy change is correct even if the actual change in state is carried out

irreversibly. Although this appears to be somewhat confusing, consideration of some

examples will help in understanding this concept.

The second law also includes important considerations about entropy: For a

reversible change in state, the entropy of the universe is constant, whereas for an

irreversible change in state, the entropy of the universe increases. Again, the second

law cannot be proved, but we can demonstrate that without this law, events could

transpire that are contrary to our everyday experience. Two examples are given in

the following sections.

Without the second law, a gas could spontaneously compress! Let us illustrate this

by considering the isothermal expansion of an ideal gas, V1 to V2 with constant T.
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The entropy change is

ΔS = ∫
(

dqrev

T

)
=
(

1

T

)
∫ dqrev =

qrev

T
(2-3)

For the isothermal expansion of an ideal gas, ΔE = 0. (Because of the definition of an

ideal gas, the energy, E, is determined by the temperature only and does not depend

on the volume and pressure.) Therefore,

qrev = −wrev = ∫
V2

V1

PdV = ∫
V2

V1

(nRT
V

)
dV = nRT ln

(
V2

V1

)
(2-4)

and

ΔS = nR ln

(
V2

V1

)
(2-5)

For an expansion, V2 > V1 and ΔS > 0. For a compression, V2 < V1 and ΔS < 0.

The second law does not prohibit this situation, as we are considering the entropy

change for the system, not the universe. This result is in accord with the intuitive

interpretation of entropy previously discussed: A larger volume has more positions

for the gas to occupy and consequently a higher entropy.

We must now consider what happens to the entropy of the surroundings. For a

reversible change, ΔS = −qrev/T, and the entropy of the universe is the sum of the

entropy change for the system and that for the surroundings: ΔS = qrev/T − qrev/T
= 0, which is consistent with the second law. However, for an irreversible change

the situation is different. Let us make this irreversible change by setting the exter-

nal pressure equal to zero during the change in state. In that case, w = 0 and since

ΔE = 0, q = 0. Therefore, no heat is lost by the surroundings. The entropy change

for the universe is

ΔS = ΔSgas + ΔSsurr = nR ln

(
V2

V1

)
+ 0

The second law says that the entropy change of the universe must be greater than

zero, which requires that V2 > V1. In other words, a spontaneous compression cannot

occur. This is not required by the first law.

As a second example, consider two blocks at different temperatures, Th and Tc,

where h and c designate hot and cold so Th > Tc. We will put the blocks together so

that heat is transferred from the hot block to the cold block. The entropy changes in

the two blocks are given by

dSc =
dq

Tc

and dSh = −
dq

Th

If the two blocks are considered to be the universe, the entropy change of the

universe is

dSc + dSh = dq

(
1

Tc

− 1

Th

)
> 0
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As predicted by the second law, the entropy of the universe increases. What if the

heat flows from the cold block to the hot block? Then the sign of the heat change is

reversed and

dSc + dSh = dq

(
1

Th

− 1

Tc

)
< 0

This predicts that the entropy of the universe would decrease, which is impossible

according to the second law. Thus, heat cannot flow from the cold bar to the hot bar.

This is not prohibited by the first law.

Exceptions to the second law can be used to create perpetual motion machines,

which we know are impossible. These are sometimes called perpetual motion

machines of the second kind, whereas perpetual motion machines created by

exceptions to the first law are called perpetual motion machines of the first

kind.

2.3 CALCULATION OF THE ENTROPY

A reversible path must always be found to calculate the entropy change. At constant

volume, the relationship

dqrev = nCVdT (2-6)

can be used, whereas at constant pressure

dqrev = nCPdT (2-7)

or

ΔS = ∫
nCPdT

T
(2-8)

Entropy changes for phase changes are particularly easy to calculate since they

occur at constant temperature and pressure. At constant temperature and pressure,

ΔS =
qrev

T
= ΔH

T
(2-9)

For example, for the process

Benzene(s, 1 atm, 279 K) → Benzene(𝓁, 1 atm, 279 K) (2-10)

ΔH= 2380 cal/mol and ΔS = 2380/279 = 8.53 cal/(mol K)= 8.53 eu. Here 1 cal/(mol

K) is defined as an entropy unit, eu. The entropy change for the reverse process is

−8.53 eu. Note that the reverse process is not prohibited by the second law since it

is the entropy change for the system, not the universe. Also note that, as expected,

going from a solid to a liquid involves a positive entropy change since the liquid state

is more disordered than the solid.



2.3 CALCULATION OF THE ENTROPY 27

Although it is easy to state that the entropy change can be calculated for an irre-

versible process by finding a reversible way of going from the initial state to the final

state, this is not always easy to do. This is usually not a matter of great consequence

for our considerations, but we will consider one example to illustrate the process. Let

us determine the entropy change for the following process:

H2O(𝓁, 298 K, 1 atm) → H2O(g, 298 K, 1 atm) (2-11)

This change is not a reversible change in state, as we know that the normal boiling

point of water at 1 atm is 373 K. A possible reversible cycle that would go from the

initial state to the final state at constant pressure is

H2O(𝓁, 298 K, 1 atm) → H2O(g, 298 K, 1 atm)

↓ ↑

H2O(𝓁, 373 K, 1 atm) → H2O(g, 373 K, 1 atm) (2-12)

The entropy change for the bottom process, which is reversible, is simply

ΔH/T = 9710/373 = 26 cal/(mol K). The entropy change for the left-hand side of the

square is (Eq. (2-8))

ΔS = CP ln

(
T2

T1

)
= 18 ln

(
373

298

)
= 4 cal∕(mol K)

and for the right-hand side of the square is

ΔS = Cp ln

(
T2

T1

)
= 8.0 ln

(
298

373

)
= −1.8 cal∕(mol K)

(The heat capacity of H2O(g) from 298 to 373 K is assumed to be that of H2O(g) at

373 K.) The entropy changes for these three reversible processes can be added to give

the entropy change for the change in state given in Eq. (2-11): 28 cal/(mol K).

An alternative reversible path that can be constructed lowers the pressure to the

equilibrium vapor pressure of water at 298 K. The corresponding constant tempera-

ture cycle is

H2O(𝓁, 298 K, 1 atm) → H2O(g, 298 K, 1 atm)

↓ ↑

H2O(𝓁, 298 K, 0.0313 atm) → H2O(g, 298 K, 0.0313 atm) (2-13)

In this case, we would have to calculate the change in entropy as the pressure is low-

ered and raised. This can easily be done but is beyond the scope of this presentation of

thermodynamics. The point of this exercise is to illustrate how entropy changes can

be calculated for irreversible as well as reversible processes, and multiple reversible

processes can be found.
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In principle, the entropy can be calculated from statistical considerations. Boltz-

mann derived a relationship between the entropy, S, and the number of microstates, W:

S = kB ln W (2-14)

where kB is Boltzmann’s constant, 1.38 × 10−23 J/K. It is rarely possible to determine

the number of microstates although the number of microstates could be calculated

from Eq. (2-14) if the entropy is known. For a simple case, such as the three numbered

balls with which we started our discussion of the second law, this calculation can

readily be done. The system has 3! microstates and an entropy of 1.51 × 10−23 J/K.

Any ordered sequence – for example 1, 2, 3 – has only one microstate, so W = 1, and

S = 0. Since the disordered state has a higher entropy, this predicts that the balls will

spontaneously disorder and that an ordered state is much less likely. The statistical

concept of entropy is discussed more fully in Chapter 15.

2.4 THIRD LAW OF THERMODYNAMICS

We will not dwell on the third law as the details are of little consequence in biology.

The important fact for us is that the third law establishes a zero for the entropy scale.

Unlike the energy, entropy has an absolute scale. The third law can be stated as fol-

lows: the entropy of perfect crystals of all pure elements and compounds is zero at

absolute zero. The tricky points of this law are the meanings of “perfect” and “pure,”

but we will not discuss this in detail. It is worth noting that a perfect crystal has one

microstate, and, therefore, an entropy of zero according to Eq. (2-14).

The absolute standard entropy can be determined from measurements of the tem-

perature dependence of the heat capacity using the relationship

So
298

= ∫
298

0

CP dT

T
(2-15)

Here the entropy at absolute zero has been assumed to be zero in accordance with

the third law. A plot of CP/T versus T gives a curve such as that shown in Figure 2-1.

The area under the curve is the absolute standard entropy. Tables of So
298

are readily

available (cf. Refs. 4 and 5 in Chapter 1). The entropy at temperatures other than 298

K can be calculated from the relationship

ST = So
298

+ ∫
T

298

CP dT

T
(2-16)

For a chemical reaction,

ΔST = ΔSo
298

+ ∫
T

298

ΔCP dT

T
(2-17)

These relationships are analogous to those used for the enthalpy. Indeed, entropies of

reactions can be calculated in a similar manner to enthalpy changes.
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FIGURE 2-1. A plot of the constant-pressure heat capacity divided by the temperature, CP/T,
versus the temperature, T, for graphite. The absolute entropy of graphite at 300 K is the area

under the curve up to the dashed line (Eq. (2-15)). If phase changes occur as the temperature

is changed, the entropy changes associated with the phase changes must be added to the area

under the curve of the CP/T versus T plot.

2.5 MOLECULAR INTERPRETATION OF ENTROPY

We will now consider a few examples of absolute entropies and entropy changes for

chemical reactions, and how they might be interpreted in molecular terms. The abso-

lute entropies for water as a solid, liquid, and gas at 273 K and 1 atm are 41.0, 63.2,

and 188.3 J/(mol K), respectively. The molecular interpretation of these numbers is

straightforward, namely, that solid is more ordered than liquid, which is more ordered

than gas; therefore, the solid has the lowest entropy and the gas the highest.

Standard entropy changes for some chemical reactions are given in Table 2-1.

As expected, the entropy change is negative for the first two reactions in the gas

phase as the number of moles of reactants is greater than the number of moles of

products. Of course, these reactions could have been written in the opposite direction.

The entropy change would then have the opposite sign. At first glance, the result for

TABLE 2-1. Standard Entropy Changes for Selected Reactions

Reaction ΔSo
298

[J∕(mol K)]

H(g) + H(g) ⇌ H2(g) −98.7

2 H2(g) + O2(g) ⇌ 2 H2O(g) −88.9

H+(aq) + OH−(aq) ⇌ H2O(𝓁) +80.7

Cytidine 2′ -monophosphate + Ribonuclease −54a

A ⇌ Enzyme − inhibitor complex

aH. Naghibi, A. Tamura, and J. M. Sturtevant, Proc. Natl. Acad. Sci. USA 92, 5597 (1995).
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the third reaction in the table is surprising, as the number of moles of reactants is

greater than the number of moles of products. This results because the solvent must be

included in the molecular interpretation of the observed entropy change. Ions in water

interact strongly with water so that highly ordered water molecules exist around the

ions.

When the neutral species is formed, these highly ordered water molecules become

less ordered. Thus, the entropy change for water is very positive, much more posi-

tive than the expected entropy decrease for H+ and OH− when they form water. This

simple example indicates that considerable care must be taken in interpreting entropy

changes for chemical reactions in condensed media. The entropy of the entire system

under consideration must be taken into account. The final entry is for the binding

of a ligand to an enzyme. In this case, no reasonable interpretation of the entropy

change is possible as three factors come into play: the loss in entropy as two reactants

become a single entity, the changes in the structure of water, and structural changes

in the protein. The fact that the entropy change is comparable to the value expected

for the combination of two molecules to produce one molecule is simply fortuitous.

Extreme caution should be taken in making molecular interpretations of thermody-

namic changes in complex systems.

We have established all of the thermodynamic principles necessary to discuss

chemical equilibrium. We will now apply these principles to develop a general frame-

work for dealing with chemical reactions.

2.6 GIBBS ENERGY

In a sense, we have reached our goal. We have developed thermodynamic criteria for

the occurrence of reversible and irreversible (spontaneous) processes, namely, for the

universe,ΔS= 0 for reversible processes and must be greater than zero for irreversible

processes. Unfortunately, this is not terribly useful, as we are interested in what is

happening in the system and require criteria that are easily applicable to chemical

reactions. This can be achieved by defining a new thermodynamic state function, the

Gibbs energy:

G = H − TS (2-18)

(J. Willard Gibbs developed the science of thermodynamics virtually single-handedly

around the turn of the century at Yale University. To this day, his collected works are

prized possessions in the libraries of people seriously interested in thermodynamics.)

In much of the literature and in some text books, G is called the free energy rather

than the Gibbs energy. However, the official international nomenclature now defines

G as the Gibbs energy.

At constant temperature,

ΔG = ΔH − TΔS

= qP − TΔS = qP − qrev (2-19)



2.6 GIBBS ENERGY 31

For a reversible process, qP = qrev, so ΔG = 0. For irreversible processes, the situa-

tion is a bit more complex as the sign of the heat change must be considered. For an

endothermic process, qP < qrev, so ΔG < 0. For an exothermic process, the absolute

value of qP is greater than the absolute value of qrev, but both are negative, so again,

ΔG < 0. This is the Gibbs energy change for the system and does not involve the

surroundings. We now have developed criteria that tell us if a process occurs sponta-

neously at constant temperature and pressure. If ΔG < 0, the change in state occurs

spontaneously, whereas if ΔG > 0, the reverse change in state occurs spontaneously.

If ΔG = 0, the system is at equilibrium. At constant volume and temperature, the

spontaneity is determined by the Helmholtz energy, A = E − TS.

As with the energy and enthalpy, only differences in the Gibbs energy can be

measured. Consequently, the zero of the Gibbs energy scale is arbitrary. As for the

enthalpy, the zero of the scale is taken as the elements in their stable state at 1 atm and

298 K. Moreover, analogous to the enthalpy, tables of the Gibbs energies of forma-

tion of compounds are available so that Gibbs energy changes for chemical reactions

can be calculated (cf. Refs. 4–6 in Chapter 1). Referring back to the reaction in

Eq. (1-25),

ΔGo
298

= cGo
298,C

+ dGo
298,D − aGo

298,A
− bGo

298,B
(2-20)

where the Gibbs energies on the right-hand side of the equation are Gibbs energies

per mole. We will discuss the temperature dependence of the Gibbs energy a bit later,

but it is useful to remember that at constant temperature,

ΔG = ΔH − TΔS (2-21)

Standard state Gibbs energy changes are available for biochemical reactions, although

comprehensive tabulations do not exist, and the definition of “standard state” is more

complex than in the gas phase as discussed previously. Standard state Gibbs energies

of formation for some substances of biochemical interest are given in Appendix 4.

As an illustration of the concept of Gibbs energy, consider the conversion of liquid

water to steam:

H2O(𝓁) ⇌ H2O(g) (2-22)

At the boiling point, ΔH = 9710 cal/mol and ΔS = 26 eu. Therefore,

ΔG = 9710 − 26T (2-23)

At equilibrium, ΔG = 0 and Eq. (2-23) gives T = 373 K, the normal boiling point of

water. If T > 373 K, ΔG < 0, and the change in state is spontaneous, whereas if T <

373 K, ΔG > 0, and the reverse process, condensation, occurs spontaneously.

Calculation of the Gibbs energy for a change in state is not always straightforward.

As the entropy is part of the definition of the Gibbs energy, a reversible process must

always be found to calculate the Gibbs energy change. The Gibbs energy change, of

course, is the same regardless of how the change in state is accomplished since the

Gibbs energy is a state function. As a simple example, again consider the change in
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state in Eq. (2-11). This is not a reversible process since the two states are not in

equilibrium. This is not a spontaneous change in state so that ΔG > 0. In order to

calculate the value of ΔG, we must think of a reversible path for carrying out the

change in state. The two cycles in Eqs. (2-12) and (2-13) again can be used. In both

cases, the bottom reaction is an equilibrium process, so ΔG = 0. To calculate ΔG
for the top reaction, we only need to add up the ΔG values for the vertical processes.

These can be calculated from the temperature (upper cycle) and pressure (lower cycle)

dependence of G. Such functional dependencies will be considered shortly. It will be

a useful exercise for the reader to carry out the complete calculations.

2.7 CHEMICAL EQUILIBRIA

Although we now have developed criteria for deciding whether or not a process will

occur spontaneously, they are not sufficient for consideration of chemical reactions.

We know that chemical reactions are generally not “all or nothing” processes; instead,

an equilibrium state is reached where both reactants and products are present. We

will now derive a quantitative relationship between the Gibbs energy change and the

concentrations of reactants and products. We will do this in detail for the simple case

of ideal gases and by analogy for reactions in liquids.

The starting point for the derivation is the definition of Gibbs energy and its total

derivative:

G = H − TS = E + PV − TS (2-24)

dG = dE + PdV + VdP − TdS − SdT (2-25)

Since dE = dq + dw = TdS – PdV for a reversible process,

dG = VdP − SdT (2-26)

(Although this relationship was derived for a reversible process, it is also valid for

an irreversible process.) Let us now consider a chemical reaction of ideal gases at

constant temperature. For one mole of each gas component,

dG = VdP = RTdP∕P (2-27)

We will reference all of our calculations to a pressure of 1 atm for each component.

In thermodynamic terms, we have selected 1 atm as our standard state. If Eq. (2-27)

is now integrated from P0 = 1 atm to P,

G = Go + RT ln

(
P
P0

)
= Go + RT ln P (2-28)
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We will now return to our prototype reaction, Eq. (1-25), and calculate the Gibbs

energy change. The partial pressures of the reactants are given in parentheses:

aA(PA) + bB(PB) ⇌ cC(PC) + dD(PD)

ΔG = cGC + dGD − aGA − bGB

= cGo
C
+ dGo

D
− aGo

A
− bGo

B
+ cRT ln PC

+dRT ln PD − aRT ln PA − bRT ln PB (2-29)

or

ΔG = ΔGo + RT ln

(
Pc

C
Pd

D

Pa
A

Pb
B

)
(2-30)

ΔG is the Gibbs energy for the reaction in Eq. (2-29) when the system is not at equi-

librium. At equilibrium, at constant temperature and pressure, ΔG = 0, and Eq. (2-30)

becomes

ΔGo = −RT ln

(
Pc

C
Pd

C

Pa
A

Pb
B

)
e

= −RT ln K (2-31)

Here the subscript e has been used to designate equilibrium and K is the equilibrium

constant.

We now have a quantitative relationship between the partial pressures of the reac-

tants and the standard Gibbs energy change, ΔGo. The standard Gibbs energy change

is a constant at a given temperature and pressure but will vary as the temperature and

pressure change. If ΔGo
< 0, then K > 1, whereas if ΔGo

> 0, K < 1. A common mis-

take is to confuse the Gibbs energy change with the standard Gibbs energy change.

The Gibbs energy change is always equal to zero at equilibrium and can be calculated

from Eq. (2-30) when not at equilibrium. The standard Gibbs energy change is a con-

stant representing the hypothetical reaction with all of the reactants and products at

a pressure of 1 atm. It is equal to zero only if the equilibrium constant fortuitously

is 1.

Biological reactions do not occur in the gas phase. What about Gibbs energy in

solutions? Conceptually there is no difference. The molar Gibbs energy at constant

temperature and pressure can be written as

G = Go + RT ln

(
c
c0

)
(2-32)

where c is the concentration and c0 is the standard state concentration. A more correct

treatment would define the molar free energy as

G = Go + RT ln a (2-33)

where a is the thermodynamic activity and is dimensionless. However, the thermody-

namic activity can be written as a product of an activity coefficient and the concentra-

tion. The activity coefficient can be included in the standard Gibbs energy, Go, which
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gives rise to Eq. (2-32). We need not worry about this as long as the solution condi-

tions are clearly defined with respect to salt concentration, pH, etc. It is not of great

concern because all of the aforementioned complications can be included in the stan-

dard Gibbs energy change since, in practice, the standard Gibbs energy is determined

by measuring the equilibrium constant under defined conditions. A more complete

discussion of the concepts of standard states, activity, and activity coefficients is given

in Chapter 4.

Finally, we should note that the Gibbs energy per mole at constant temper-

ature and pressure is called the chemical potential, 𝜇, in more sophisticated

treatments of thermodynamics, but there is no need to introduce this terminol-

ogy here. Chapter 4 provides a more comprehensive discussion of the chemical

potential.

If we take the standard state as 1 mol/liter, then the results parallel to Eqs. (2-28),

(2-30), and (2-31) are

G = Go + RT ln c (2-34)

ΔG = ΔGo + RT ln

(
cc

C
cd

D

ca
A

cb
B

)
(2-35)

ΔGo = −RT ln

(
cc

C
cd

D

ca
A

cb
B

)
e

= −RT ln K (2-36)

Equations (2-34)−(2-36) summarize the thermodynamic relationships necessary to

discuss chemical equilibria.

Note that, strictly speaking, the equilibrium constant is dimensionless as all

of the concentrations are ratios, the actual concentration divided by the standard

state concentration. However, practically speaking, it is preferable to report equi-

librium constants with the dimensions implied by the ratio of concentrations in

Eq. (2-36). The equilibrium constant is determined experimentally by measuring

concentrations, and attributing dimensions to this constant assures that the cor-

rect ratio of concentrations is considered and that the standard state is precisely

defined.

Consideration of the Gibbs energy also allows us to assess how the energy and

entropy are balanced to achieve the final equilibrium state. Since ΔG = ΔH − TΔS at

constant T and P, it can be seen that a change in state is spontaneous if the enthalpy

change is very negative and/or the entropy change is very positive. Even if the

enthalpy change is unfavorable (positive), the change in state will be spontaneous if

the TΔS term is very positive. Similarly, even if the entropy change is unfavorable

(TΔS very negative), the change in state will be spontaneous if the enthalpy change

is sufficiently negative. Thus, the final equilibrium achieved is a balance between the

enthalpy (ΔH) and the entropy (TΔS).
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2.8 PRESSURE AND TEMPERATURE DEPENDENCE OF THE GIBBS
ENERGY

We will now return to the pressure and temperature dependence of the Gibbs energy.

At constant temperature, the pressure dependence of the Gibbs energy follows

directly from Eq. (2-26), namely,

dG = VdP (2-37)

This equation can be integrated if the pressure dependence of the volume is known,

as for an ideal gas. For a chemical reaction, Eq. (2-37) can be rewritten as

dΔG = ΔVdP (2-38)

where ΔV is the difference in volume between the products and reactants. The pres-

sure dependence of the equilibrium constant at constant temperature follows directly,

dΔGo = −RT dln K = ΔVdP (2-39)

or
d ln K

dP
= −ΔV

RT
(2-40)

For most chemical reactions, the pressure dependence of the equilibrium constant is

quite small so that it is not often considered in biological systems.

Equilibrium constants, however, frequently vary significantly with temperature.

At constant pressure, Eq. (2-26) gives

dG = −SdT (2-41)

or

dΔG = −ΔSdT (2-42)

Returning to the basic definition of free energy at constant temperature and pressure,

ΔG = ΔH − TΔS = ΔH + T
(

dΔG
dT

)

This equation can be divided by T2 and rearranged as follows:

−ΔG
T2

+

(
dΔG
dT

)
T

= −ΔH
T2

d(ΔG∕T)
dT

= −ΔH
T2

(2-43)
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Equation (2-43) is an important thermodynamic relationship describing the

temperature dependence of the Gibbs energy at constant pressure and is called the

Gibbs-Helmholtz equation. The temperature dependence of the equilibrium constant

follows directly:
d(ΔGo∕T)

dT
= −R

d ln K
dT

or
d ln K

dT
= ΔHo

RT2
(2-44)

If ΔHo is independent of temperature, Eq. (2-44) can easily be integrated:

d ln K = ∫
T2

T1

ΔHodT
RT2

ln

(
K2

K1

)
= ΔHo

R

(
1

T1

− 1

T2

)
=

(ΔHo∕R)(T2 − T1)
T1T2

(2-45)

When carrying out calculations, the difference between reciprocal temperatures

should never be used directly as it introduces a large error. Instead, the rearrangement

in Eq. (2-45) should be used in which the difference between two temperatures

occurs. With this equation and a knowledge of ΔHo, the equilibrium constant can be

calculated at any temperature if it is known at one temperature.

What about the assumption that the standard enthalpy change is independent of

temperature? This assumption is reasonable for many biological reactions if the tem-

perature range is not too large. In some cases, the temperature dependence cannot be

neglected and must be included explicitly in carrying out the integration of Eq. (2-44).

The temperature dependence of the reaction enthalpy depends on the difference in

heat capacities between the products and reactants as given by Eq. (1-38).

Examples of the temperature dependence of equilibrium constants are displayed in

Figure 2-2. As predicted by Eq. (2-45), a plot of ln K versus 1/T is a straight line with a

slope of −ΔHo/R. The data presented are for the binding of DNA to DNA-binding

proteins (i.e., Zn fingers). The dissociation constants for binding are quite similar for

both proteins at 22∘C, 1.08 × 10−9 M (WT1 protein) and 3.58 × 10−9 M (EGR1 pro-

tein). However, as indicated by the data in the figure, the standard enthalpy changes

are opposite in sign, +6.6 kcal/mol and −6.9 kcal/ mol, respectively. Consequently,

the standard entropy changes are also quite different, 63.3 eu and 15.3 eu, respec-

tively. These data indicate that there are significant differences in the binding pro-

cesses, despite the similar equilibrium constants at 22∘C.

2.9 PHASE CHANGES

The criterion that ΔG = 0 at equilibrium at constant temperature and pressure is quite

general. For chemical reactions, this means that the Gibbs energy of the products is

equal to the Gibbs energy of the reactants. For phase changes of pure substances, this
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FIGURE 2-2. Temperature dependence of the equilibrium binding constant, K, for the binding

of DNA to binding proteins (“zinc fingers”), WT1 (•) and EGR1 (○), to DNA. Adapted with

permission from T. Hamilton, F. Borel, and P. J. Romaniuk, Biochemistry 37, 2051 (1998). ©

1998 American Chemical Society.

means that at equilibrium the Gibbs energies of the phases are equal. If we assume

two phases, A and B, Eq. (2-26) gives

dGA = VAdP − SAdT = dGB = VBdP − SBdT

Rearrangement gives
dP
dT

=
ΔSBA

ΔVBA

(2-46)

where ΔSBA = SB − SA and ΔVBA = VB − VA. (All of these quantities are assumed

to be per mole for simplicity.) This equation is often referred to as the Clapeyron

equation. Note that the entropy change can be written as

ΔSBA =
ΔHBA

T
(2-47)

Equation (2-46) gives the slope of phase diagrams, plots of P versus T that are use-

ful summaries of the phase behavior of a pure substance. As an example, the phase

diagram of water is given in Figure 2-3.

The lines in Figure 2-3 indicate when two phases are in equilibrium and coexist.

Only one phase exists in the open areas, and when the three lines meet, three phases

are in equilibrium. This is called the triple point and can only occur at a pressure of
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FIGURE 2-3. Schematic representation of the phase diagram of water with pressure, P, and

temperature, T, as variables. The phase diagram is not to scale and is incomplete, as several dif-

ferent phases of solid water are known. If volume is included as a variable, a three-dimensional

phase diagram can be constructed.

0.006 atm and 0.01∘C. The slopes of the lines are given by Eq. (2-46). The number

of phases that can coexist is governed by the phase rule,

f = c − p + 2 (2-48)

where f is the number of degrees of freedom, c is the number of components, and p is

the number of phases. This rule can be derived from the basic laws of thermodynam-

ics. For a pure substance, the number of components is 1, so f = 3 − p. In the open

spaces, one phase exists, so that the number of degrees of freedom is 2, which means

that both T and P can be varied. Two phases coexist on the lines, which gives f = 1.

Because only one degree of freedom exists, at a given value of P, T is fixed and vice

versa. At the triple point, three phases coexist, and there are no degrees of freedom,

which means that both P and T are fixed.

The study of phase diagrams is an important aspect of thermodynamics, and some

interesting applications exist in biology. For example, membranes contain phospho-

lipids. If phospholipids are mixed with water, they spontaneously form bilayer vesi-

cles with the head groups pointing outward toward the solvent so that the interior of

the bilayer is comprised of the hydrocarbon chains of the phospholipids. A schematic

representation of the bilayer is given in Figure 2-4. The hydrocarbon chain can be

either disordered, at high temperatures, or ordered, at low temperatures, as indicated

schematically in the figure. The transformation from one form to the other behaves

as a phase transition so that phase diagrams can be constructed for phospholipids.

Moreover, the phase diagrams depend not only on the temperature but also on the

phospholipid composition of the bilayer. This phase transition has biological impli-

cations in that the fluidity of the hydrocarbon portion of the membrane strongly
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(b)

(a)

FIGURE 2-4. Schematic representation of the vesicles of phospholipids that are formed when

phospholipids are suspended in water (a). Here the small circles represent the head groups and

the wiggly lines the two hydrocarbon chains. A phase change can occur in the side chains from

a disordered to an ordered state as sketched in (b).

affects the transport and mechanical properties of the membranes. Phase diagrams

for phospholipids and phospholipid–water mixtures can be constructed by a variety

of methods, including scanning calorimetry and nuclear magnetic resonance.

2.10 ADDITIONS TO THE GIBBS ENERGY

As a final consideration in developing the concept of Gibbs energy, we will return

to our original development of equilibrium, namely, Eq. (2-33). In arriving at this

expression for the molar Gibbs energy at constant temperature and pressure, the

assumption was made that only P − V work occurs. This is not true in general and for

many biological systems in particular. If we went all the way back to the beginning

of our development of the Gibbs energy changes associated with chemical equilibria

(Eq. (2-26)) and derived the molar Gibbs energy at constant temperature and pressure,

we would find that

G = Go + RT ln a + wmax (2-49)

where wmax is the maximum (reversible) non-P − V work. For example, for an ion of

charge z in a potential field Ψ, wmax is zFΨ, where F is the Faraday. We have used

this relationship in Chapter 1 to calculate the work of moving an ion across a mem-

brane with an imposed voltage. In terms of transport of an ion across a membrane,

this assumes that the ion is being transported from the inside to the outside with an

external membrane potential of Ψ. This extended chemical potential is useful for dis-

cussing ion transport across membranes, as we shall see later. It could also be used for

considering molecules in a gravitational or centrifugal field. (See Ref. 2 in Chapter 1

for a detailed discussion of this concept.)

We are now ready to consider some applications of thermodynamics to biological

systems in more detail.
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PROBLEMS

2-1. One mole of an ideal gas initially at 300 K is expanded from 0.2 to 1.0 liter.

Calculate ΔS for this change in state if it is carried out under the following

conditions. Assume a constant volume heat capacity for the gas, CV, of
3

2
R.

a. The expansion is reversible and isothermal.

b. The expansion is irreversible and isothermal.

c. The expansion is reversible and adiabatic (q = 0).

d. The expansion is irreversible with an external pressure of 1 atm and adia-
batic.

2-2. The alcohol dehydrogenase reaction, which removes ethanol from your blood,

proceeds according to the following reaction:

NAD+ + Ethanol ⇌ NADH + Acetaldehyde

Under standard conditions (298 K, 1 atm, pH 7.0, pMg 3, and an ionic strength of

0.25 M), the standard enthalpies and Gibbs energies of formation of the reactants

are as follows:

H∘ (kJ/mol) G∘ (kJ/mol)

NAD+ −10.3 1059.1

NADH −41.4 1120.1

Ethanol −290.8 63.0

Acetaldehyde −213.6 24.1

a. Calculate ΔGo, ΔHo, and ΔSo for the alcohol dehydrogenase reaction under

standard conditions.

b. Under standard conditions, what is the equilibrium constant for this reac-

tion? Will the equilibrium constant increase or decrease as the temperature

is increased?

2-3. The equilibrium constant under standard conditions (1 atm, 298 K, pH 7.0) for

the reaction catalyzed by fumarase

Fumarate + H2O ⇌ l-malate

is 4.00. At 310 K, the equilibrium constant is 8.00.

a. What is the standard Gibbs energy change, ΔGo, for this reaction?

b. What is the standard enthalpy change, ΔHo, for this reaction? Assume that

the standard enthalpy change is independent of temperature.

c. What is the standard entropy change, ΔSo, at 298 K for this reaction?
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d. If the concentration of both reactants is equal to 0.01 M, what is the Gibbs

energy change at 298 K? As the reaction proceeds to equilibrium, will more

fumarate or l-malate form?

e. What is the Gibbs energy change for this reaction when equilibrium is

reached?

2-4. The following reaction is catalyzed by the enzyme creatine kinase:

Creatine + ATP ⇌ Creatine phosphate + ADP

a. Under standard conditions (1 atm, 298 K, pH 7.0, pMg 3.0, and an ionic

strength of 0.25 M) with the concentrations of all reactants equal to 10 mM,

the Gibbs energy change, ΔG, for this reaction is 13.3 kJ/mol. What is the

standard Gibbs energy change, ΔGo, for this reaction?

b. What is the equilibrium constant for this reaction?

c. The standard enthalpies of formation for the reactants are as follows:

Creatine −540 kJ/mol

Creatine phosphate −1510 kJ/mol

ATP −2982 kJ/mol

ADP −2000 kJ/mol

What is the standard enthalpy change, ΔHo, for this reaction?

d. What is the standard entropy change, ΔSo, for this reaction?

2-5. a. It has been proposed that the reason ice skating works so well is that the

pressure from the blades of the skates melts the ice. Consider this proposal

from the viewpoint of phase equilibria. The phase change in question is

H2O(s) ⇌ H2O(𝓁)

Assume that ΔH for this process is independent of temperature and pressure

and is equal to 80 cal/g. The change in volume, ΔV, is about −9.1 × 10−5 l/g.

The pressure exerted is the force per unit area. For a 180 lb person and an area

for the skate blades of about 6 in.2, the pressure is 30 lb/in.2 or about 2 atm.

With this information, calculate the decrease in the melting temperature of

ice caused by the skate blades. (Note that 1 cal = 0.04129 1 atm.) Is this a

good explanation for why ice skating works?

b. A more efficient way of melting ice is to add an inert compound such as

urea. (We will avoid salt to save our cars.) The extent to which the freez-

ing point is lowered can be calculated by noting that the molar Gibbs energy

of water must be the same in the solid ice and the urea solution. The molar

Gibbs energy of water in the urea solution can be approximated as Go
liquid

+
RT ln Xwater, where Xwater is the mole fraction of water in the solution. The
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molar Gibbs energy of the solid can be written as Go
solid

. Derive an expression

for the change in the melting temperature of ice by equating the Gibbs ener-

gies in the two phases, differentiating the resulting equation with respect to

temperature, integrating from a mole fraction of 1 (pure solvent) to the mole

fraction of the solution, and noting that ln Xwater = ln(1 − Xurea) ≈ −Xurea.

(This relationship is the series expansion of the logarithm for small values of

Xurea. Since the concentration of water is about 55 M, this is a good approx-

imation.) With the relationship derived, estimate the decrease in the melting

temperature of ice for an 1 M urea solution. The heat of fusion of water is

1440 cal/mol.

2-6. What is the maximum amount of work that can be obtained from hydrolyzing

1 mole of ATP to ADP and phosphate at 298 K? Assume that the concentrations

of all reactants are 0.01 M and ΔGo is −32.5 kJ/mol. If the conversion of free

energy to mechanical work is 100% efficient, how many moles of ATP would

have to be hydrolyzed to lift a 100 kg weight 1 meter high?



CHAPTER 3

Applications of Thermodynamics to
Biological Systems

3.1 BIOCHEMICAL REACTIONS

From the discussion in the previous chapter, it should be clear that standard Gibbs

energy and enthalpy changes can be calculated for chemical reactions from available

tables of standard Gibbs energies and enthalpies of formation (e.g., Appendix 4).

Even if a particular reaction has not been studied, it is frequently possible to combine

the standard Gibbs energy and enthalpy changes of other known reactions to obtain

the standard Gibbs energy change of the desired reaction (e.g., Appendix 5). Knowl-

edge of the standard Gibbs energy change permits calculation of the equilibrium

constant and vice versa. When considering biochemical reactions, the exact nature of

the “standard state” can be confusing. Usually, the various possible ionization states

of the reactants are not specified, so that the total concentration of each species is

used in the expression for the equilibrium constant. For example, for ATP, the stan-

dard state would normally be 1 M, but this includes all possible states of protonation,

and if magnesium ion is present, the sum of the metal complex and uncomplexed

species. Furthermore, pH 7 is usually selected as the standard condition so that the

activity of the hydrogen ion is set equal to 1 at pH 7 and the standard Gibbs energy

of formation of the hydrogen ion is set equal to zero at pH 7. Therefore, the hydro-

gen ion is not usually included when writing stoichiometric equations. Finally, the

activity of water is set equal to 1 for reactions in dilute solutions. This assumption

is justified since the concentration of water is essentially constant. However, a word

of caution is needed here as the standard Gibbs energy and enthalpy of formation

for water must be explicitly included if it is a reactant. Again, the choice of standard

states can readily be incorporated into the standard Gibbs energy change and standard

Gibbs energy of formation. The best way to avoid ambiguity is to explicitly write the

chemical reaction and the conditions (pH, salt, etc.) to which a given Gibbs energy

change refers.

As a specific example, let us again consider the reaction catalyzed by hexokinase,

the phosphorylation of glucose by ATP. We have previously calculated the standard
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enthalpy change for this reaction from the known enthalpies of hydrolysis. This can

also be done for the standard Gibbs energy change of the hexokinase reaction because

the standard Gibbs energies of hydrolysis are known. As before, the “standard states”

are 1 M at 1 atm, 298 K, pH 7.0, pMg 3.0, and an ionic strength of 0.25 M.

ΔGo(kJ∕mol) ΔHo(kJ∕mol)

G + Pi ⇌ G6P + H2O 11.6 0.5

ATP + H2O ⇌ ADP + Pi −32.5 −30.9

G + ATP ⇌ G6P + ADP −20.9 −30.4

The equilibrium constant for the hexokinase reaction can be calculated from the

standard Gibbs energy change:

ΔGo = −RT ln K or K = 4630

{
= ([G6P] [ADP])

([G][ATP])

}

Since the standard enthalpy change is known, −30.4 kJ/mol, the equilibrium constant

can be calculated at other temperatures by use of Eq. (2-45). For example, at 310

K (37oC), the equilibrium constant is 2880. The standard entropy change for this

reaction can be calculated from the relationship ΔGo = ΔHo− T ΔSo.

How are standard Gibbs energy changes for reactions measured? The obvious

answer is by measurement of the equilibrium constant and use of Eq. (2-36). How-

ever, in order to determine an equilibrium constant, a measurable amount of both

reactants and products must be present. For reactions that essentially go to comple-

tion, a sequence of reactions must be found with measurable equilibrium constants

that can be summed to total the reaction of interest. For example, the equilibrium con-

stant for the hydrolysis of ATP to ADP and Pi calculated from the aforementioned

standard Gibbs energy change is 5 × 105 M under “standard conditions.” Obviously,

this equilibrium constant would be very difficult to measure directly. The follow-

ing reactions, however, could be used to calculate this equilibrium constant (and the

standard Gibbs energy change):

G + ATP ⇌ G6P + ADP

G6P + H2O ⇌ G + Pi

ATP + H2O ⇌ ADP + Pi

The equilibrium constant for the first reaction is about 4600 and for the second reac-

tion is about 110 M, both of which can be measured experimentally. Tables of stan-

dard Gibbs energies of formation (Appendix 4) and standard Gibbs energy changes

for reactions (Appendix 5) can be constructed using this methodology.

Knowledge of the equilibrium constants of biological reactions and their temper-

ature dependencies is of great importance for understanding metabolic regulation.

It can also be of practical importance in the design of laboratory experiments, for

example, in the development of coupled assays.
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3.2 METABOLIC CYCLES

Thermodynamics is particularly useful for understanding metabolism. Metabolism

consists of many different sets of reactions, each set, or metabolic cycle, designed

to utilize and produce very specific molecules. The reactions within a cycle are cou-

pled in that the product of one reaction becomes the reactant for the next reaction

in the cycle. These coupled reactions can be very conveniently characterized using

thermodynamic concepts. Before considering a specific metabolic cycle, let us con-

sider some general thermodynamic properties of coupled reactions. As a very simple

illustration, consider the coupled reactions

A → B → C → D

The Gibbs energy changes for the first three reactions can be written as

A → B ΔGAB = ΔGo
AB

+ RT ln

(
[B]
[A]

)

B → C ΔGBC = ΔGo
BC

+ RT ln

(
[C]
[B]

)

C → D ΔGCD = ΔGo
CD

+ RT ln

(
[D]
[C]

)

The Gibbs energy for the overall conversion of A to D can be obtained by adding

these Gibbs energies:

A → D ΔGAD = ΔGo
AB

+ ΔGo
BC

+ ΔGo
CD

+ RT ln

{
([B] [C][D)
([A][B][C])

}

ΔGAD = ΔGo
AD

+ RT ln

(
[D]
[A]

)

Whether A can be converted to D depends on the standard Gibbs energies for

the three individual reactions and the concentrations of A and D. The concentrations

of B and C are of no consequence! Note that since the total standard Gibbs energy

determines whether A will be converted to D, it is possible for one of the standard

Gibbs energy changes of the intermediate steps to be very unfavorable (positive) if it

is balanced by a very favorable (negative) standard Gibbs energy change.

Metabolic pathways contain hundreds of different reactions, each catalyzed by

a specific enzyme. Although the thermodynamic analysis shown earlier indicates

that only the initial and final states need be considered, it is useful to analyze a

metabolic pathway to see how the individual steps are coupled to each other through

the associated Gibbs energy changes. The specific metabolic pathway that we will

examine is anaerobic glycolysis. Anaerobic glycolysis is the sequence of reactions

that metabolizes glucose into lactate and also produces ATP, the physiological energy

currency. As we have seen, the standard Gibbs energy for the hydrolysis of ATP is
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TABLE 3-1. Gibbs Energy Changes for Anaerobic Glycolysis

Reaction ΔGo (kJ/mol) ΔG (kJ/mol)

Part One
Glucose + ATP ⇌ Glucose-6-P + ADP −16.7 −33.3

Glucose-6-P ⇌ Fructose-6-P 1.7 −2.7

Fructose-6-P+ATP ⇌ Fructose-1,6-bisphosphate + ADP −14.2 −18.6

Fructose-1-6,-bisphosphate ⇌ Dihydroxyacetone-P + 23.9 0.7

Glyceraldehyde- 3 -P

Dihydroxyacetone-P ⇌ Glyceraldehye-3-P 7.5 2.6

Glucose + 2 ATP ⇌ 2 ADP + 2 Glyceraldehyde-3-P 2.2 −51.3

Part Two
Glyceraldehyde-3-P + Pi + NAD+ ⇌ 6.3 −1.0

1,3-Bisphosphoglycerate + NADH

1,3-Bisphosphoglycerate +ADP ⇌ 3-P-Glycerate + ATP −18.9 −0.6

3-Phosphoglycerate ⇌ 2-Phosphoglycerate 4.4 1.0

2-Phosphoglycerate ⇌ Phosphoenolpyruvate + H2O 1.8 1.1

Phosphoenolpyruvate + ADP ⇌ Pyruvate + ATP −31.7 −23.3

Pyruvate + NADH ⇌ Lactate + NAD+ −25.2 1.9

Glyceraldehyde-3P + Pi + 2 ADP ⇌ Lactate + 2 ATP + H2O −63.3 −20.9

Source: Adapted from R. H. Garrett and C. M. Grisham, Biochemistry, Saunders College Publishing,

Philadelphia, 1995, pp. 569–597.

quite large and negative so that the hydrolysis of ATP can be coupled to reactions with

an unfavorable Gibbs energy change. The sequence of reactions involved in anaerobic

glycolysis is shown in Table 3-1, along with the standard Gibbs energy changes. The

standard states are as usual for biochemical reactions, namely, pH 7 and 1 M for reac-

tants, with the concentration of each reactant as the sum of all ionized species. The

activity of water is assumed to be unity. (This is somewhat different from Appendices

4 and 5, where ionic strength and, in some cases, the magnesium ion concentration

are specified.)

The overall reaction for anaerobic glycolysis is

Glucose + 2 Pi + 2 ADP ⇌ 2Lactate + 2ATP + 2H2O (3-1)

In anaerobic metabolism, the pyruvate produced in the second to the last step is con-

verted to lactate in muscle during active exercise. In aerobic metabolism, the pyruvate

that is produced in the second to the last step is transported to the mitochondria,

where it is oxidized to carbon dioxide and water in the citric acid cycle. The reac-

tions in Table 3-1 can be divided into two parts. The first part produces 2 moles of

glyceraldehyde-3-phosphate according to the overall reaction

Glucose + 2ATP ⇌ 2 ADP + 2 Glyceraldehyde-3-phosphate (3-2)
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Note that this reaction actually requires 2 moles of ATP. However, the second part of

the cycle produces 4 moles of ATP with the overall reaction

Glyceraldehyde-3-phosphate + Pi + 2 ADP ⇌ Lactate + 2 ATP + H2O (3-3)

Since 2 moles of glyceraldehyde-3-phosphate are produced in part one of the cycle,

Eq. (3-3) must be multiplied by 2 and added to Eq. (3-2) to give the overall reaction,

Eq. (3-1). The standard Gibbs energies, of course, also must be multiplied by 2 for the

reactions in part two of glycolysis and added to those for the reactions in part one to

give the overall standard Gibbs energy change, −124.4 kJ/mol. If the standard Gibbs

energies of formation in Appendix 4 are used to calculate the standard Gibbs energy

change for Eq. (3-3), a value of −128.6 kJ/mol is obtained. This small difference can

be attributed to somewhat different standard states. Unfortunately, not all of the nec-

essary Gibbs energies of formation are available in Appendix 4 to calculate standard

Gibbs energy changes for all of the reactions in Table 3-1.

The standard enthalpy change for Eq. (3-3) is −63.0 kJ/mol, so that a substantial

amount of heat is produced by glycolysis. The standard entropy change can be

calculated from the known standard Gibbs energy and enthalpy changes and is

220 J/(mol K). Thus, both the standard enthalpy and entropy changes are favorable

for the reaction to proceed. It is interesting to compare these numbers with those for

the direct oxidation of glucose:

Glucose(s) + 6 O2(g) ⇌ 6 CO2(g) + 6 H2O(𝓁) (3-4)

The standard Gibbs energy change for this reaction is −2878.4 kJ/mol, the stan-

dard enthalpy change is −2801.6 kJ/mol, and the standard entropy change is

−259 J/(mol K). This process produces a very large amount of heat relative to that

produced by the metabolic cycle. This would not be very useful for physiological

systems.

As we have stressed previously, for a single reaction, it is not the standard Gibbs

energy change that must be considered in determining whether products are formed,

it is the Gibbs energy for the particular concentrations of reactants that are present.

In order to calculate the Gibbs energy changes for the reactions in Table 3-1, the

concentrations of metabolites must be known. These concentrations have been deter-

mined in erythrocytes and are summarized in Table 3-2. The Gibbs energy changes

calculated with these concentrations using Eq. (2-35) and the standard Gibbs energy

changes are included in Table 3-1. The additional assumptions have been made that

these concentrations are valid at 298 K, although they were determined at 310 K,

and [NADH]/[NAD+] = 1.0 × 10−3. (We have elected to carry out calculations at

298 K, where the standard Gibbs energies are known, rather than at the physiological

temperature of 310 K. This does not alter any of the conclusions reached.)

Consideration of Gibbs energy changes, rather than standard Gibbs energy

changes, produces some interesting changes. The overall standard Gibbs

energy change for the first part of glycolysis is +2.2 kJ/mol, whereas the Gibbs

energy change is −51.3 kJ/mol. By contrast, the standard Gibbs energy change for
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TABLE 3-2. Steady-State Concentrations for Glycolytic

Intermediates in Erythrocytes

Metabolite Concentration (mM)

Glucose 5.0

Glucose-6-phosphate 0.083

Fructose-6-phosphate 0.014

Fructose-1,6-bisphosphate 0.031

Dihydroxyacetone phosphate 0.14

Glyceraldehyde-3-phosphate 0.019

1,3-Bisphosphoglycerate 0.001

2,3-Bisphosphoglycerate 4.0

3-Phosphoglycerate 0.12

2-Phosphoglycerate 0.030

Phosphoenolpyruvate 0.023

Pyruvate 0.051

Lactate 2.9

ATP 1.85

ADP 0.14

Pi 1.0

Source: Adapted from S. Minakami and H. Yoshikawa, Biochem. Biophys.
Res. Commun. 18, 345 (1965).

the second part of glycolysis is much more negative than the Gibbs energy change.

Thus, when considering the coupling of chemical reactions, considerable care must

be exercised in making comparisons. Of course, as we stated at the beginning, the

concentrations of the intermediates are of no consequence in determining the overall

Gibbs energy changes. The reader might wish to confirm that this is indeed the

case.

Before we leave our discussion of glycolysis, it is worth addressing the individ-

ual reactions in the cycle. All of the reactions are catalyzed by enzymes. If this

were not the case, the reactions would occur much too slowly to be physiologically

relevant.

The first step is the very favorable phosphorylation of glucose—both the standard

Gibbs energy change and the Gibbs energy change are favorable. The advantage

to the cell of phosphorylating glucose is that creating a charged molecule prevents

it from diffusing out of the cell. Furthermore, the intracellular concentration of

glucose is lowered so that if the concentration of glucose is high on the outside of

the cell, more glucose will diffuse into the cell. The second step, the isomerization

of glucose-6-phosphate to fructose-6-phosphate, has a somewhat unfavorable

standard Gibbs energy change, but the Gibbs energy change is favorable enough

for the reaction to proceed. The next step has a very favorable standard Gibbs

energy change, as well as a favorable Gibbs energy change, because the phos-

phorylation of fructose-6-phosphate is coupled to the hydrolysis of ATP. This

very irreversible step is the commitment by the cell to metabolize glucose, rather
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than to store it. The next two steps produce glyceraldehyde-3-phosphate, the fuel

for the second half of glycolysis that produces 4 moles of ATP. Both of these

reactions have very unfavorable standard Gibbs energy changes, although the

Gibbs energy changes are only slightly positive. This completes the first part of

glycolysis. Note that 2 moles of ATP have been utilized to produce the final product,

glyceraldehyde-3-phosphate. As noted previously, the standard Gibbs energy change

for this first part is actually unfavorable, but the Gibbs energy change is quite

favorable.

The purpose of the second part of glycolysis is to convert a substantial portion of

the metabolic energy of glucose into ATP. In comparing the standard Gibbs energy

changes with the Gibbs energy changes of the individual steps, it is worth noting that

the second step, the formation of 3-phosphoglycerate, has a very favorable standard

Gibbs energy change, yet the Gibbs energy change is approximately zero so that this

reaction is approximately at equilibrium. This is true of essentially all of the reactions

in this part of glycolysis, except for the reaction that produces pyruvate, where both

the standard Gibbs energy change and the Gibbs energy change are quite negative.

Both the overall standard Gibbs energy change and the Gibbs energy change for the

second part of glycolysis are very favorable.

This thermodynamic analysis of glycolysis is a good example of how thermody-

namics can provide a framework for understanding the many coupled reactions occur-

ring in biology. It also illustrates how metabolism is utilized to produce molecules

such as ATP that can be used to drive other physiological reactions, rather than con-

verting most of the Gibbs energy to heat.

3.3 DIRECT SYNTHESIS OF ATP

As we have seen, the standard Gibbs energy change for the hydrolysis of ATP to

ADP and Pi is −32.5 kJ/mol, so it seems unlikely that ATP would be synthesized by

the reverse of this reaction. The concentrations of reactants cannot be adjusted suf-

ficiently to make the overall Gibbs energy favorable. However, we know that ATP

is synthesized directly from ADP and Pi in mitochondria. For many years, people in

this field grappled with how this might happen: Both probable and improbable mech-

anisms were proposed. In 1961, Peter Mitchell proposed that the synthesis of ATP

occurred due to a coupling of the chemical reaction with a proton gradient across the

membrane (1). This hypothesis was quickly verified by experiments and he received

a Nobel Prize for this work.

The enzyme responsible for ATP synthesis, ATP synthase, consists of a protein

“ball,” which carries out the catalytic function, coupled to membrane-bound proteins

through which protons can be transported. The process of ATP synthesis is shown

schematically in Figure 3-1. Although this enzyme is found only in mitochondria in

humans, it is quite ubiquitous in nature and is found in chloroplasts, bacteria, and

yeast, among others. The chemiosmotic hypothesis states that a pH gradient is estab-

lished across the membrane by a series of electron transfer reactions and that ATP
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High pH

Low pH

ADP + Pi ATP

H+

E

Membrane

FIGURE 3-1. Schematic representation of ATP synthase, E, in mitochondria. The enzyme

structure inside the mitochondria contains the catalytic sites. Protons are pumped from the

outside of the membrane to the inside as ATP is synthesized.

synthesis is accompanied by the simultaneous transport of protons across the mem-

brane. The overall reaction can be written as the sum of two reactions:

ADP + Pi ⇌ ATP + H2O

nH+
out ⇌ nH+

in

ADP + Pi + nH+
out ⇌ ATP + nH+

in
+ H2O (3-5)

The value of n has been determined to be 3 (see Ref. 2). The Gibbs energy change

for the transport of protons in Eq. (3-5) can be written as

ΔG = 3RT ln

( [
H+

in

]
[H+

out]

)
(3-6)

(The standard Gibbs energy change for this process is zero since the standard state

for the hydrogen ion is the same on both sides of the membrane.)

At 298 K, a pH differential of one unit gives a Gibbs energy change of

−17.1 kJ/mol. The actual physiological situation is even more favorable as a mem-

brane potential exists whereby the membrane is more negative on the inside relative

to the outside. If we utilize the extended chemical potential, Eq. (2-49), an additional

term is added to Eq. (3-6) equal to 3 FΨ, where 3 is the number of protons trans-

ported, F is the Faraday, and Ψ is the membrane potential. For a membrane potential

of −100 mV, −29 kJ would be added to the Gibbs energy change in Eq. (3-6).

The standard Gibbs energy for the synthesis of ATP from ADP and Pi is

+32.5 kJ/mol, but we need to know the Gibbs energy change under physiological

conditions. Although the concentrations of the reactants are not known exactly, we

can estimate that the ratio of ATP to ADP is about 100, and the concentration of

phosphate is 1 – 10 mM. This makes the ratio [ATP]/([ADP][Pi]) equal to 100–1000.
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The Gibbs energy change at 298 K is

ΔG = 32.5 + RT ln(100 − 1000) = 32.5 + (11.4 − 17.1) = 43.9 − 49.6 kJ∕mol

Thus, the coupling of the synthesis of ATP to a modest proton gradient and membrane

potential can readily provide the necessary Gibbs energy for the overall reaction to

occur.

The principle to be learned from this example is that the coupling of Gibbs energies

is very general. It can involve chemical reactions only, as in glycolysis, or it can

involve other processes such as ion transport across membranes, as in this example.

3.4 ESTABLISHMENT OF MEMBRANE ION GRADIENTS BY CHEMICAL
REACTIONS

In discussing ATP synthesis, we have not specified how the electrochemical gradient

is established. This involves a complex sequence of coupled reactions that we shall

not discuss here. Instead, we will discuss a case where the Gibbs energy associated

with the hydrolysis of ATP is used to establish an ion gradient. The process of signal

transduction in the nervous system involves the transport of Na+ and K+ across the

membrane. Neuronal cells accumulate K+ and have a deficit of Na+ relative to the

external environment. (This is also true for other mammalian cells.) When an elec-

trical signal is transmitted, this imbalance is altered. The imbalance causes a resting

membrane potential of about −70 mV. This situation is illustrated in Figure 3-2, with

some typical ion concentrations.

How is the ion gradient established? This is done by a specific ATPase, the Na+/K+

ATPase, that simultaneously pumps ions and hydrolyzes ATP. The process can be

Na+ = 10 mM
K+ = 100 mM

Na+ = 140 mM
K+ = 5 mM

ADP + PiATP

K+Na+

Membrane

E

Ψ = −70 mV

FIGURE 3-2. Schematic representation of the Na+ and K+ gradients in a cell. The Gibbs

energy necessary for the creation of these gradients is generated by the enzymatic hydrolysis

of ATP. The Na+/K+ ATPase is designated as E, and typical concentrations of the ions and

membrane potential, Ψ, are given.
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written as the sum of two reactions:

2 K+
out + 3Na+

in
⇌ 2 K+

in
+ 3 Na+out

ATP + H2O ⇌ ADP + Pi

2 K+
out + 3 Na+

in
+ ATP + H2O ⇌ 2 K+

in
+ 3 Na+out + ADP + Pi (3-7)

The stoichiometry has been established by experimental measurements. The Gibbs

energy change for the first step is

ΔG = RT ln

⎧⎪⎨⎪⎩

([
Na+out

]3[
K+

in

]2
)

([
Na+

in

]3[
K+

out

]2
)
⎫⎪⎬⎪⎭
+ 3FΨ − 2FΨ

With Ψ = 70 mV, T = 298 K, and the concentrations of Na+ and K+ in Figure 3-2,

ΔG = 41.3 kJ/mol. Note that the membrane potential produces a favorable (negative)

Gibbs energy change for the transport of K+ and an unfavorable Gibbs energy change

(positive) for the transport of Na+. We have previously calculated that ΔG for ATP

hydrolysis is −(43.9−49.6) kJ/mol. Therefore, the hydrolysis of ATP is sufficient to

establish the ion gradient and accompanying membrane potential. This process is

called active transport.
The coupling of Gibbs energies in biological systems can be used to understand

many of the events occurring, and many other interesting examples exist. However,

we will now turn to consideration of protein and nucleic acid structures in terms of

thermodynamics.

3.5 PROTEIN STRUCTURE

An extensive discussion of protein structure is beyond the scope of this treatise, but

various aspects of protein structure are considered throughout this text. Many excel-

lent discussions of protein structure are available (cf. Refs. 3–5). A few aspects of

protein structure are now discussed in terms of thermodynamic considerations. Pro-

teins, of course, are polymers of amino acids and the amino acids contain both polar

and nonpolar groups. The structures of the 20 common amino acids are given in

Appendix 2, and the covalent structure of a polypeptide chain is shown in Figure 3-3.

We first consider the role of nonpolar groups in proteins, that is, amino acid side

chains containing methylene and methyl groups and aromatic residues.

As a starting point, let us consider the thermodynamics of transferring the hydro-

carbons methane and ethane from an organic solvent to water. The thermodynamic

parameters can be measured for this process simply by determining the solubility of

the hydrocarbons in each of the solvents. Since the pure hydrocarbon is in equilibrium

with each of the saturated solutions, the two saturated solutions must be in equilib-

rium with each other. The transfer reaction can be written as the sum of the solubility
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Amino terminus Carboxyl terminus

C C N N N N+H3N

OH

R1 R2 R3H H HR4 R5

OH OH OH OH

C C C C C C C C

O−

FIGURE 3-3. A polypeptide chain. The amino acid side chains are represented by Ri, and the

amino and carboxyl termini are shown.

equilibria:

Hydrocarbon(organic solvent) ⇌ Hydrocarbon

Hydrocarbon ⇌ Hydrocarbon (water)

Hydrocarbon (organic solvent) ⇌ Hydrocarbon (water) (3-8)

The transfer Gibbs energy is

ΔGt = RT ln

([
XO

]
[XW]

)

where XO and XW are the mole fraction solubilities in the organic solvent and water,

respectively. (The use of mole fractions is the appropriate concentration scale in this

instance because of standard state considerations that we will not deal with here.)

Measurement of the temperature dependence of the transfer Gibbs energy will permit

ΔH and ΔS to be determined (Eqs. (2-42 and 2-43)). The thermodynamic parameters

obtained at 298 K in several organic solvents are summarized in Table 3-3.

As expected, the Gibbs energy change is unfavorable—hydrocarbons do not dis-

solve readily in water. However, the energy change is favorable so that the negative

entropy change is responsible for the unfavorable Gibbs energy. What is the reason

for the negative entropy change? It is due to the fact that the normal water structure

is broken by the insertion of the hydrocarbon and the water molecules tend to form

TABLE 3-3. Thermodynamic Parameters for Hydrocarbon Transfer from Organic Solvents

to Water at 298 K

Transfer reaction ΔSt [cal/(mol K)] ΔHt (kcal/mol) ΔGt (kcal/mol)

CH4, benzene to water −18 −2.8 +2.6

CH4, ether to water −19 −2.4 +3.3

CH4, CCl4 to water −18 −2.5 +2.9

C2H6, benzene to water −20 −2.2 +3.8

C2H6, CCl4 to water −18 −1.7 +3.7

Source: Adapted from W. Kauzmann, Adv. Protein Chem. 14, 1 (1959).
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a hydrogen-bonded structure of water. Thus, it is the formation of ice-like ordered

structures around the hydrocarbon that is the source of the negative entropy change.

To make this more relevant to proteins, the Gibbs energy of transfer for amino

acids from a hydrocarbon-like environment (ethanol) to water has been measured.

This is done by determining the solubility of the amino acids in ethanol and water.

Similar to before, in both cases the amino acid in solution is in equilibrium with the

solid, so that the transfer Gibbs energy can be measured:

Amino acid (ethanol) ⇌ Amino acid (solid)

Amino acid (solid) ⇌ Amino acid (water)

Amino acid (ethanol) ⇌ Amino acid (water) (3-9)

Some of the results obtained are summarized in Table 3-4. In order to interpret

these results, we must remember that in ethanol the amino acid is uncharged

(NH2—RCH—COOH), whereas in water it is a zwitterion (NH+
3
− RCH − COO−).

If glycine, which has no side chains, is taken as the standard, then subtracting its

transfer Gibbs energy from the transfer Gibbs energies of the other amino acids will

give the transfer Gibbs energy for the amino acid side chains. The overall transfer

Gibbs energy for all of the amino acids is negative (favorable) because the charged

amino and carboxyl groups are solvated by water, a highly favorable interaction.

However, the standard Gibbs energy changes of transfer for the hydrophobic side

chains are all positive, as was seen for the transfer of methane and ethane from an

organic solvent into water.

What is the relevance of such data for protein structure? These data indicate that

the apolar side chains of amino acid side chains would prefer to be in a nonaqueous

environment. That is, they prefer to cluster together. This is, in fact, true for most

proteins. The hydrophobic groups aggregate together on the interior of the protein,

forming a hydrophobic core, with the more polar groups tending to be on the outside

interacting with water. This important concept was enunciated by Walter Kauzmann

in 1959 (6). Although the interactions associated with forming the hydrophobic core

are often called hydrophobic bonds, it is important to remember that the driving force

TABLE 3-4. Gibbs Energy Changes for Transferring Amino Acids from Ethanol to Water at

298 K

Compound ΔGt (kcal/mol) ΔGt,side chain (kcal/mol)

Glycine −4.63 —

Alanine −3.90 +0.73

Valine −2.94 +1.69

Leucine −2.21 +2.42

Isoleucine −1.69 +2.97

Phenylalanine −1.98 +2.60

Tyrosine −1.78 +2.85

Source: Adapted from C. Tanford, J. Am. Chem. Soc. 84, 4240 (1962).
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TABLE 3-5. Thermodynamic Parameters for Hydrogen Bond Formationa

Reactant Solvent ΔGo
298

(kcal/mol) ΔHo
298

(kcal/mol) ΔSo
298

[cal/(mol K)]

CH3COOHb Gas −8.02 −15.9 −26.6

CH3CONH2
c CCl4 −0.92 −4.2 −11

Dioxane 0.39 −0.8 −4

H2O 3.1 0.0 −10

aStandard state is 1 M.
bSee J. O. Halford, J. Chem. Phys. 9, 859 (1941).
cSee I. M. Klotz and J. S. Franzen, J. Am. Chem. Soc. 84, 3461 (1962).

for forming a hydrophobic core is not the direct interactions between hydrophobic

groups; instead, it is the release of water molecules from the ice-like structures that

surround hydrophobic groups in water. The thermodynamic analysis clearly indicates

that the formation of “hydrophobic bonds” is an entropy-driven process. In fact, ΔHt

for the transfer of methane and ethane from water to organic solvent is positive, that

is, energetically unfavorable. This means that an increase in temperature will tend to

strengthen the hydrophobic bonding—if ΔH remains positive over the temperature

range under consideration.

The formation of hydrogen bonds in protein structures is prevalent, and we

will now consider the thermodynamics of hydrogen bond formation. Thermody-

namic studies have been made of many different types of hydrogen bonds. A few

selected examples are summarized in Table 3-5. The first is the formation of a

hydrogen-bonded dimer of acetic acid molecules in the gas phase:

2CH3 CH3 CH3 (g)C C

O H H

H

(g)

O

O

O

C

O

O

(3-10)

As expected, both ΔHo and ΔSo are negative. The former represents the energy pro-

duced in forming two hydrogen bonds and the latter is due to two molecules forming

a dimer (a more ordered system). As two hydrogen bonds are formed, the enthalpy

change associated with a single hydrogen bond is about −7 kcal/mol.

The second example is the dimerization of N-methylacetamide, a good model for

hydrogen bonding involving the peptide bond:

2CH3 CH3

CH3
CH3

CH3
CH3

H
N C C

HN

O

C

HN

O

O

(3-11)
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This dimerization was studied in a variety of solvents, and the results in carbon

tetrachloride, dioxane, and water are included in Table 3-5. In carbon tetrachloride,

the solvent does not compete for the hydrogen bonds of N-methylacetamide,

and the results are not very different from those for acetic acid dimerization in

the gas phase, namely, ΔHo for formation of a single hydrogen bond is about

−4 kcal/mol and ΔSo is about −11 cal/(mol K). However, in water, which can also

form hydrogen bonds with N-methylacetamide and is present at a concentration of

about 55 M, ΔHo is approximately zero. This indicates that there is not a significant

enthalpy difference between the water-N-methylacetamide hydrogen bond and the

N-methylacetamide-N-methylacetamide hydrogen bond. Note that the standard

Gibbs energy change in water is 3 kcal/mol, so that the amount of dimer formed

is very small even at 1 M N-methylacetamide. Dioxane has two oxygens that can

accept a hydrogen bond so that ΔHo is only slightly negative.

The conclusion reached from these data (and considerably more data not pre-

sented) is that the stability of a water–protein hydrogen bond is similar to that of

intramolecular protein hydrogen bonds. Therefore, a single intramolecular hydrogen

bond on the surface of the protein is unlikely to be a strong stabilizing factor. On the

other hand, if the hydrophobic interior of a protein excludes water, a strong hydrogen

bond might exist in the interior of a protein. This statement is complicated by the

fact that proteins have “breathing” motions; that is, the protein structure continually

opens and closes with very small motions so that completely excluding water from

the interior may be difficult.

The role of the hydrogen bond in stabilizing proteins is still a matter of some

debate. The statement is often made that hydrophobic interactions are the primary

source of protein stability and hydrogen bonding provides specificity (6). There is

no doubt that extended hydrogen-bonded systems are extremely important structural

elements in proteins. Two examples are given in Figures 3-4 and 3-5, the 𝛼-helix and

the 𝛽-pleated sheet. The 𝛼-helix is a spiral structure with 3.6 amino acids per turn of

the helix. Every peptide carbonyl is a hydrogen bond acceptor for the peptide N–H

four residues away. This structure is found in many different proteins. The 𝛽-pleated

sheet is also a prevalent structure in proteins. In the 𝛽-pleated sheet, each chain is

a “pleated” helix. All of the peptide bonds participate in hydrogen bonding, but the

bonds are all between chains, rather than intrachain.

Finally, we will say a few words about the role of electrostatic interactions in

protein structures. The discussion will be confined to charge–charge interactions,

even though more subtle interactions involving, for example, dipoles and/or induced

dipoles are important. Many of the amino acids have side chains with ionizable

groups, so that a protein contains many acids and bases. For example, a carboxyl

group can ionize according to the scheme

P − COOH ⇌ P − COO− + H+ (3-12)

Here P designates the protein. Although not shown, water plays an extremely

important role in this equilibrium. Water is a strong dipole and strongly sol-

vates ions, forming a hydration “sheath.” Acetic acid is a reasonable model for
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CO (i)

NH (i + 4)

FIGURE 3-4. The 𝛼-helix found in many proteins. The yellow arrow follows the right-handed

spiral of one helical turn. The hydrogen bonds between backbone peptide bonds are brown

lines, the oxygens are red, and the nitrogens blue. The hydrogen bonds are formed between the

ith carbonyl and i + 4 NH in the peptide backbone. Copyright by Professor Jane Richardson.

Reprinted with permission.

this reaction: The thermodynamic parameters characterizing its ionization are

ΔGo = 6.6 kcal/mol, ΔHo = 0, and ΔSo = −22 cal/(mol K). The negative entropy

change is due to the ordering of water molecules around the ions. Note that the

ionization process is thermally neutral. The enthalpy changes associated with the

solvation of ions are generally negative but, in this case, are balanced by the enthalpic

change associated with breaking the oxygen-hydrogen bond.

The ionization constants for ionizable groups on proteins are generally not the

same as those of simple model compounds. This is because the ionization process is

influenced by the charge of the protein created by other ionizable groups and, in some

cases, by special structural features of the protein. This factor can be included explic-

itly in a thermodynamic analysis of protein ionizations by writing the Gibbs energy

associated with ionization as the sum of the Gibbs energy for the model compound,

or the intrinsic Gibbs energy, and the Gibbs energy of interaction:

ΔGionization = ΔGo
intrinsic

+ ΔGinteraction (3-13)
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FIGURE 3-5. The 𝛽-pleated sheets found in many proteins. Both parallel and antiparallel

strand-strand interactions are shown, as indicated by the yellow arrows. Again, the hydrogen

bonds between backbone peptide bonds are shown as brown lines between the oxygens and

nitrogens. Copyright by Professor Jane Richardson. Reprinted with permission.

The ionization properties of proteins have been studied extensively, both experimen-

tally and theoretically. For our purposes, it is important to recognize that the strong

solvation of ions means that charged groups will tend to be on the outside of the

protein, readily accessible to water.

A reasonable question to ask is: If there are so many charged groups on proteins,

would they not influence the structure simply because charged groups of opposite sign

attract, and those with the same sign repel? This is certainly the case—at very high

pH, a protein becomes very negatively charged and the interactions between nega-

tive charges can eventually cause the native structure to disappear. Similarly, at very

low pH, the interactions between positive charges can cause disruption of the native

structure. Conversely, the formation of a salt linkage between groups with opposite

charges can stabilize structures. We can make a very simple thermodynamic analy-

sis of charge–charge interactions by recognizing that the Gibbs energy of formation

of an ion pair is simply the work necessary to bring the ions to within a specified

distance, a:

ΔG =
z1z2e2

Da
(3-14)
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Here the zi are the ionic charge numbers, −e is the charge of an electron, and D is the

dielectric constant. The assumption of a simple Coulombic potential is a gross over-

simplification but suffices for our purposes. A more complete potential would include

the ionic environment of the medium, the structure of the ions, and the microscopic

structure of the solvent. If the charges are assumed to be 1, the distance of closest

approach 4 Å, and the dielectric constant of water 80, ΔG is about 1 kcal/mol. Thus,

the interaction energy is not very large in water. However, the interior of a protein is

more like an organic solvent and organic solvents have dielectric constants of about

3, which would significantly increase the Gibbs energy of interaction. In fact, salt

linkages are rarely found near the surface of proteins but are found in the interior of

proteins, as expected.

If the Gibbs energy of ionic interactions is given by Eq. (3-14), the enthalpy and

entropy can easily be calculated from Eqs. (2-42) and (2-43). Since only the dielectric

constant in Eq. (3-14) is temperature dependent, this gives

ΔH = −T2

[
d
(
ΔG
T

)
dT

]
=
(ΔG

D

)[
d (DT)

dT

]
(3-15)

ΔS = −dΔG
dT

=
(ΔG

D

)(
dD
dT

)
(3-16)

In water, both of these derivatives are negative so that if ΔG is negative, both the

entropy and enthalpy changes are positive. The positive entropy change can be ratio-

nalized as being due to the release of water of hydration of the ions when the ion pair

is formed. The enthalpy change is a balance between the negative enthalpy change

from bringing the charges closer and the positive enthalpy change associated with

removing the hydration shell. Since the enthalpy change is positive, the strength of

the ion pair interaction will increase as the temperature is increased—exactly as for

hydrophobic interactions.

Although this is an abbreviated discussion, it is clear that we know a great deal

about the thermodynamics of interactions that occur in proteins. Because of this,

you might think that we could examine the amino acid sequence of any protein and

predict its structure by looking at the possible interactions that occur and finding the

structure that has the minimum Gibbs energy. This has been a long-standing goal of

protein chemistry, but we are not yet able to predict protein structures. Why is this

the case? The difficulty is that there are thousands of possible hydrogen bonding

interactions, ionic interactions, hydrophobic interactions, and so on. As we have

seen, each of the individual interactions is associated with small Gibbs energy and

enthalpy changes—in some cases, we cannot even determine the sign. The sum of

the positive Gibbs energies of interactions is very large, as is the sum of the negative

Gibbs energies. It is the difference between the positive and negative Gibbs energies

that determines the structure. So we have two problems: accurately assessing the

Gibbs energies of individual interactions and then taking the difference between

two large numbers to determine which potential structure has the minimum Gibbs

energy. These are formidable problems, but significant progress has been made
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toward achieving the ultimate goal of predicting protein structures. The possibility

also exists that the structure having the lowest Gibbs energy is not the biologically

relevant structure. This may be true in a few cases but is unlikely to be a problem for

most proteins.

3.6 PROTEIN FOLDING

The folding of proteins into their biologically active structures has obvious phys-

iological importance. In addition, understanding the process in molecular detail is

linked directly to understanding protein structure. The study of protein folding, and

the reverse process of unfolding, is a major field of research, and we will only explore

a few facets of this fascinating subject. For our discussion, we will concentrate on

protein unfolding as this is most easily experimentally accessible. There are many

ways of unfolding proteins. When the temperature increases, proteins will eventually

unfold. From a thermodynamic standpoint, this is because the TΔS term eventually

dominates in determining the Gibbs energy change, and we know that the unfolded

state is more disordered than the native state at sufficiently high temperatures.

Chemical denaturants such as acid, base, urea, and guanidine chloride are also

often used to unfold proteins. The role of a neutrally charged denaturant such as

urea can be understood in thermodynamic terms by considering the Gibbs energy of

transfer of amino acids from water to urea, again using glycine as a reference. Some

representative Gibbs energies of transfer for hydrophobic side chains are given in

Table 3-6. Note that the Gibbs energies are all negative, so that removing hydrophobic

side chains from the interior of the protein into 8 M urea is a favorable process.

Protein unfolding can be monitored by many different methods. Probably the most

common is circular dichroism in the ultraviolet, which is quite different for native and

unfolded structures. Many other spectral and physical methods work equally well.

(Spectroscopic methods are discussed later in this text.) A representative plot of the

fraction of denatured protein, fD, versus temperature is shown in Figure 3-6 for the

N-terminal region (amino acid residues 6–85) of 𝜆 repressor, a protein from 𝜆 phage

that binds to DNA and regulates transcription. Results are shown for both no urea

and 2 M urea. As expected, the protein is less stable in the presence of 2 M urea. The

fraction of protein denatured can be written as

fD = [D]
([D] + [N])

= K
(1 + K)

(3-17)

where [D] is the concentration of denatured species, [N] is the concentration of native

species, and K(= [D]/[N]) is the equilibrium constant for denaturation. This assumes

that the unfolding process can be characterized by only two states—native and dena-

tured. For some proteins, intermediates are formed as the protein unfolds and a more

complicated analysis must be used.

Since the equilibrium constant can be calculated at any point on the curve and its

temperature dependence can be measured, the thermodynamic parameters character-

izing the unfolding can be determined. The thermodynamics of unfolding can also
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TABLE 3-6. Transfer Gibbs Energies for Selected Amino Acids from Water to 8 M Urea at

298 K

Amino acid ΔGt (kcal/mol) ΔGt,side chain (kcal/mol)

Glycine +0.10 0.0

Alanine +0.03 −0.07

Leucine −0.28 −0.38

Phenylalanine −0.60 −0.70

Tyrosine −0.63 −0.73

Source: Adapted from P. L. Whitney and C. Tanford, J. Biol. Chem. 237, 1735 (1962).
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FIGURE 3-6. Fraction of denatured protein, fD, for 𝜆6–85 phage repressor protein as a function

of temperature, T, in aqueous solution and in 2 M urea. Data from G. S. Huang and T. G. Oas,

Biochemistry 35, 6173 (1996).

conveniently be studied by scanning calorimetry. It is often found that a plot of the

logarithm of the equilibrium constant versus 1/T is not linear, as predicted, namely,

d ln K
d(1∕T)

= −ΔH
R

(3-18)

This means that the enthalpy change is temperature dependent, or in other words,

there is a large heat capacity difference, ΔCP, between the native and unfolded states.

dΔH
dT

= ΔCp (3-19)

A typical experimental result for the variation of the equilibrium constant with

temperature for 𝜆 repressor is given in Figure 3-7a. The plot of ln K versus 1/T goes

through a minimum: At higher temperatures, ΔH is positive, whereas at lower tem-

peratures, it is negative. For typical chemical reactions, this plot is a straight line!

In Figure 3-7b, the standard Gibbs energy change is plotted versus the temperature.

The protein is most stable at the maximum in the Gibbs energy curve, about 15oC.

In Figure 3-7c, ΔHo and T ΔSo are plotted versus T. Note that both ΔHo and ΔSo
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FIGURE 3-7. (a) Plot of the natural logarithm of the equilibrium constant, K, for the denat-

uration of 𝜆6–85 phage repressor protein in aqueous solution versus the reciprocal temperature

on the Kelvin scale, 1/T. (b) Plot of ΔGo for the denaturation of 𝜆6–85 phage repressor protein

versus the temperature, T. (c) Plots of ΔHo and T ΔSo versus the temperature, T, for the denat-

uration of 𝜆6–85 phage repressor protein. Data from G. S. Huang and T. G. Oas, Biochemistry
35, 6173 (1996).

are zero at a specific temperature. The practical implication of the positive value of

ΔCP is that the protein unfolds at both high temperatures and low temperatures. This

unexpected result is not confined to 𝜆 repressor. Most proteins will unfold (denature)

at low temperatures, but in many cases the temperatures where cold denaturation is

predicted to occur are below 0oC.

Some thermodynamic parameters characterizing protein denaturation are given in

Table 3-7 for a few proteins. In all cases, a large positive value of ΔCP is observed.

Note that at room temperature and above, ΔHo is typically large and positive, as is

ΔSo, so that unfolding is an entropically driven process. Before we leave our discus-

sion of protein folding/unfolding, one more important point should be mentioned. The

transition from folded to unfolded states usually occurs over a fairly small change in

temperature or denaturant concentration. This is because folding/unfolding is a highly

cooperative process—once it starts, it proceeds with very small changes in temper-

ature or denaturant. Cooperative processes are quite prevalent in biological systems,

TABLE 3-7. Representative Thermodynamic Parameters for Thermal Protein Denaturation

in Aqueous Solution at 298 K

Protein ΔGo (kJ/mol) ΔHo (kJ/mol) ΔSo [J/(mol K)] ΔCP [kJ/(mol K)]

Barnase 48.9 307 866 6.9

Chymotrypsin 45.7 268 746 14.1

Cytochrome c 37.1 89 174 6.8

Lysozyme 57.8 242 618 9.1

Ribonuclease A 27.0 294 896 5.2

𝜆 Repressor6–85
a 17.7 90.4 244 6.0

Source: Adapted from G. I. Makhatadze and P. L. Privalov, Adv. Protein Chem. 47, 307 (1995).
aSee G. S. Huang and T. G. Oas, Biochemistry 35, 6173 (1996).
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particularly when regulation of the process is desired; cooperative processes will be

discussed again in Chapter 17.

3.7 NUCLEIC ACID STRUCTURES

We will now briefly consider the structure of nucleic acids in terms of thermody-

namics. Only a few examples will be considered. Many more complete discussions

are available (3,4,7). Let us start with the well-known structure of DNA. Most DNAs

consist of two chains that form a double helix. Each chain is a polymer of nucleosides

linked by phosphodiester bonds as shown in Figure 3-8. Each nucleoside contains a

2′-deoxyribose sugar and a base, almost always adenine (A), thymine (T), cytosine

(C), or guanine (G). The phosphodiester linkage is through the 5′ and 3′ positions

on the sugars. Structures of these components are given in Appendix 3. By conven-

tion, a DNA chain is usually written so that the 5′ end of the molecule is on the left

and the 3′ on the right. The B form of the DNA double helix is shown in Figure 3-9.

The chains are arranged in an antiparallel fashion and form a right-handed helix. The

bases are paired through hydrogen bonds on the inside of the double helix and as

might be expected the negatively charged phosphodiester is on the outside. Note the

similarity to protein structure as the more hydrophobic groups tend to be on the inside
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FIGURE 3-8. Structural formula of part of a DNA/RNA chain. In DNA, the bases are usually

A, T, C, and G. In RNA, the T is replaced by U, and the 2′-H below the plane of the sugar is

replaced by OH.



64 APPLICATIONS OF THERMODYNAMICS TO BIOLOGICAL SYSTEMS
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FIGURE 3-9. Stick-figure representation of the B form of the DNA double helix. The planes

of the hydrogen-bonded bases can be seen, as well as the twisting of the chains to form a double

helix. The pale yellow spheres are the phosphorous atoms of the sugar phosphate backbone on

the outside of the helix. The bases are color coded, and the two grooves in the structure are

labeled. Copyright by Professor Jane Richardson. Reprinted with permission.

and the hydrated polar groups on the outside. However, DNA is not globular, unlike

most proteins, and forms a rod-like structure in isolation. These rods can bend and

twist to form very compact structures in cells.

Let us first examine the hydrogen-bonded pairs in DNA. Early in the history of

DNA, Erwin Chargaff noted that the fraction of bases that were A was approximately

equal to the fraction that were T in many different DNAs. Similarly, the fraction of

bases that were G was equal to the fraction that were C. This finding was important

in the postulation of the double helix structure by James Watson and Francis Crick.

As shown in Figure 3-10, these bases form hydrogen-bonded pairs, with the A–T pair

forming two hydrogen bonds and the G–C pair forming three hydrogen bonds. These

are not the only possible hydrogen-bonded pairs that can be formed between the four

bases. Table 3-8 gives the thermodynamic parameters associated with the formation
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FIGURE 3-10. Formation of the hydrogen-bonded base pairs, A–T and G–C, in DNA. In

RNA, U is substituted for T. All of the base rings are aromatic.

TABLE 3-8. Thermodynamic Parameters for Base Pairs in Deuterochloroform at 298 K

Base pair ΔGo (kcal/mol) ΔHo (kcal/mol)a ΔSo [cal/(mol K)]

A–A −0.67 −4.0 −11.4

U–U −1.07 −4.3 −11.0

A–U −2.72 −6.2 −11.8

C–C −1.97 −6.3 −15

G–G −4.1 to −5.4 (−8.5 to −10) (−15)

G–C −5.4 to −6.8 (−10.0 to −11.5) (−15)

Source: Adapted from C. R. Cantor and P. R. Schimmel, Biophysical Chemistry, Freeman, New York,

1980, p. 325. Data source: Y. Kyogoku, R. C. Lord, and A. Rich, Biochim. Biophys. Acta 179, 10 (1969).
aThe ΔHo values in parentheses have been calculated assuming ΔSo = −15 cal/(mol K).
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of various hydrogen-bonded pairs in deuterochloroform. Instead of thymine, uracil

has been used—this is the base normally found in ribonucleic acids and differs only by

a methyl group in the 5 position from thymine. It is clear that the A–U pair is favored

over the A–A and U–U pairs and that G–C is favored over G–G and C–C although the

data are not very precise. There is no simple explanation for this strong preference—it

must be due to more than hydrogen bonding, perhaps an electronic effect within those

specific pairs. Furthermore, the preference for A–T in the former three pairs is due

to a more favorable enthalpy change. On the basis of this observation, the entropy

change for the latter three pairs has been assumed to be the same in order that ΔHo

can be calculated.

In water solution, the hydrogen bonding between bases is considerably weaker

than in organic solvents because of the competition for hydrogen bond formation with

water. The assumption is that the base pair hydrogen bonds are sufficiently shielded

from water so that the structure is very stable. However, we know that this is not

entirely correct as some “breathing” motions occur, so some exposure to water must

also occur. Factors other than hydrogen bonding must contribute to the stability of

the double helix.

A consideration comes into play in nucleic acid structures that is not a major

concern in proteins, namely, the interactions between the aromatic rings of the

bases. The planes of the bases lie over one another so that the 𝜋 electrons interact;

that is, the rings are attracted to each other. This “stacking” interaction can be

studied in model systems by measuring the equilibrium constant for the interaction

of nucleosides in water, where the hydrogen bonding between nucleosides is

negligible. Some representative equilibrium constants for dimer formation are given

in Table 3-9. The interaction is quite weak, although it appears that purine–purine

interactions are stronger than purine–pyrimidine interactions, which in turn are

stronger than pyrimidine–pyrimidine interactions. This is the order expected for

𝜋 electron interactions. The enthalpy change associated with these interactions is

somewhat uncertain but is definitely negative. A value of −3.4 kcal/mol has been

obtained for formation of an A–A stack (8).

Is the “stacking” interaction entirely due to 𝜋 electron interactions, or is the solvent

involved, as for hydrophobic interactions in proteins? The “stacking” interaction has

TABLE 3-9. Association Constants and Standard Gibbs Energy Changes for Base Stacking

in H2O at 298 K

Base stack K (molar−1) ΔGo (kcal/mol)

A–A 12 −1.50

T–T 0.91 +0.06

C–C 0.91 +0.06

T–C 0.91 +0.06

A–T 3 to 6 −0.70 to −1.10

A–C 3 to 6 −0.70 to −1.10

G–C 4 to 8 −0.80 to −1.20

Source: Adapted from T. N. Solie and J. A. Schellman, J. Mol. Biol. 33, 6 (1968).
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been found to be solvent dependent, with water being the most favorable solvent. This

suggests that hydrophobic interactions may be involved. However, you should recall

that hydrophobic interactions are endothermic and entropically driven by the release

of ordered water molecules around the noninteracting hydrophobic groups. The most

likely possibility is that both 𝜋 electron interactions and hydrophobic effects play a

role in base stacking.

3.8 DNA MELTING

One of the reasons for wanting to understand the interactions in the DNA molecule

is to understand the stability of DNA since it must come apart and go together as

cells reproduce. One way to assess the stability of DNA is to determine its thermal

stability. This can readily be studied experimentally because the ultraviolet spectra of

stacked bases differ significantly from those of unstacked bases. Thus, if the tempera-

ture is raised, the spectrum of DNA changes as it “melts.” This is shown schematically

in Figure 3-11. Because of the relative stability of the hydrogen bonding, the A–T
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FIGURE 3-11. Hypothetical melting curves for double helix structures of poly d(AT), DNA

(containing A–T and G–C base pairs), and poly d(GC). The fraction of chains not in the double

helix structure, fs, is plotted versus the temperature. The melting temperatures, Tm, are indicated

by the dashed lines. The shape of the curves and the Tm values are dependent on the length of

the chains and their concentrations. This drawing assumes that the concentrations and chain

lengths are comparable in all three cases.
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regions melt at a lower temperature than the G–C regions. The melting of AT and

GC polymers can be measured, and as shown in Figure 3-11, the AT structure melts

at a lower temperature than a typical DNA, and the GC structure at a higher tem-

perature. The temperature at which half of the DNA structure has disappeared is

the melting temperature, Tm. If the transition from fully helical DNA to separated

fragments is assumed to be a two-state system, then thermodynamic parameters can

be calculated, exactly as for protein unfolding. Thus, the equilibrium constant is 1

(ΔGo = 0) at Tm. Determination of the temperature dependence of the equilibrium

constant permits calculation of the standard enthalpy and Gibbs energy changes for

the “melting” process.

The real situation is more complex than shown, as DNA may not melt in a

well-defined single step, and mixtures of homopolynucleotides can form structures

more complex than dimers, but a more detailed consideration of these points is

beyond the scope of this text. However, it should be mentioned that thermal melting

of single-stranded homopolymers is a useful tool for studying stacking interactions:

As with DNA, the spectrum will change as the bases unstack. The thermodynamic

interpretation of these results is complex (cf. Ref. 3).

From a practical standpoint, many of the aforementioned difficulties can be cir-

cumvented by the use of model systems to determine the thermodynamics of adding

a base pair to a chain of nucleotides. Thus, for example, an oligonucleotide An could

be added to Tn and a complex of AnTn formed. The same experiment can be car-

ried out with An+1 and Tn+1. If ΔGo is determined for the formation of each of the

complexes, then the difference between the two standard Gibbs energies of forma-

tion gives the standard Gibbs energy change for the formation of one A–T pair. The

temperature dependence of this Gibbs energy difference can be used to obtain the

standard enthalpy and entropy changes for formation of a single A–T pair. With

knowledge of the thermodynamic parameters for the formation of single A–T and

G–C pairs within a chain, the question can be asked: Does this permit calculation of

the thermodynamic stability of a DNA of a given composition? Regrettably, this is

not the case. The stability of a given DNA cannot be predicted simply by knowing

the fraction of G–C pairs in the DNA.

Remarkably, if the effect of the nearest neighbors of each base pair is taken

into account, a reasonable estimate of the thermodynamic stability of DNA can be

obtained. This was discovered by studying many different complementary strands

of short DNAs and looking for regularities (9,10). The rationale for this procedure

lies in the importance of hydrogen bonding between each pair and the stacking

interactions with its nearest neighbors. Ten nearest neighbor parameters suffice

for determining the thermodynamic stability of a given DNA sequence, with one

additional assumption, namely, the thermodynamic parameters for initiating DNA

structure are different from those for adding hydrogen-bonded pairs to an existing

chain. This takes into account that getting the two chains together and forming the

first base pair is more difficult than adding base pairs to the double helix. Moreover,
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TABLE 3-10. Thermodynamic Parameters for Determination of DNA Stabilitya

DNA pair ΔGo (kcal/mol) ΔHo (kcal/mol) ΔSo [cal/(mol K)]

5′-A–A − 1.00 − 7.9 − 22.2

3′-T–T

5′-A–T − 0.88 − 7.2 − 20.4

3′-T–A

5′-T–A − 0.58 − 7.2 − 21.3

3′-A–T

5′-A–C − 1.44 − 8.4 − 22.4

3′-T–G

5′-C–A − 1.45 − 8.5 − 22.7

3′-G–T

5′-A–G − 1.28 − 7.8 − 21.0

3′-T–C

5′-G–A − 1.30 − 8.2 − 22.2

3′-C–T

5′-C–G − 2.17 − 10.6 − 27.2

3′-G–C

5′-G–C − 2.24 − 9.8 − 24.4

3′-C–G

5′-C–C − 1.84 − 8.0 − 19.9

3′-G–G

Per GC at terminus + 0.98 + 0.1 − 2.8

Per AT at terminus + 1.03 2.3 4.1

Source: Adapted from J. SantaLucia, Jr.,. SantaLucia, Jr. and D. Hicks, Ann. Rev. Biophys. Biolmolec.
Structure 33, 415 (2004).
apH 7.0, 1 M NaCl, 310 K.

the G–C hydrogen-bonded pair nucleates the double helix formation better than an

A–T pair since it is more stable. (Only ten parameters are needed because some of

the combinations of dinucleotides are redundant, for example, 5′GA3′/3′CT5′ =
5′TC3′/3′AG5′.) In thermodynamic terms, this can be written as

ΔGo = ΔGo(initiation) +
∑

ΔGo(nearest neighbors) (3-20)

where the sum is over all pairs of nearest neighbor interactions. The thermodynamic

parameters necessary to calculate the nearest neighbor interactions are given in

Table 3-10, along with those characterizing the double helix initiation. The best fit

of the data on model systems utilizes two additional parameters that are usually only

small corrections; this refinement will not be considered here (cf. Ref. 9).
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A simple example will illustrate how these data can be used. Consider the reaction

5′-A-G-C-T-G-3′

5′-C-A-G-C-T-3′

5′-A-G-C-T-G-3′
3′-T-C-G-A-C-5′

+

The sum of the nearest neighbor standard Gibbs energy changes associated with the

formation of the five base pair DNA from Table 3-10 is

∑
ΔGo = 5′-A-G + 5′-G-C + 5′-C-T + 5′-T-G

T-C-5′ C-G-5′ G-A-5′ A-C-5′

= −1.28 − 2.24 − 1.28 − 1.45 = −6.25kcal∕mol

The standard Gibbs energy for the end effects is 0.98 + 1.03 = 2.01 kcal/mol,

so that the standard Gibbs energy change for formation of this DNA fragment is

− 4.24 kcal/mol. Similarly, ΔHo = − 31.5 kcal/mol and ΔSo = − 87.8 cal/(mol K).

The temperature dependence of the standard Gibbs energy change can be calculated

by assuming the standard enthalpy change is independent of temperature. This

relatively simple procedure permits the thermal stability of any linear DNA to be

calculated to a good approximation.

Knowledge of the thermal properties of DNA fragments is important both physi-

ologically and practically. Knowing the stability of DNA obviously is of interest in

understanding genetic replication. From a practical standpoint, knowing the stabil-

ity of DNA fragments is important in planning cloning experiments. DNA probes

must be used that will form stable duplexes with the target DNA. The temperature at

which the duplex becomes stable can be estimated by calculating the melting temper-

ature, Tm, that is, the temperature at which half of the strands are in the double helix

conformation. The equilibrium constant for formation of the double helix duplex is

K = [D]
[S]2

(3-21)

where D is the helical duplex and S is the single strand. If the total concentration of

the oligonucleotide is C0, the concentration of single strands at Tm is C0/2 and that

of the duplex is C0/4. If we insert these relationships into Eq. (3-21), we see that K
= 1/C0 at Tm. If we insert the relationship between the equilibrium constant and the

standard Gibbs energy change, we obtain

ΔGo

(RTm)
= ln C0 (3-22)

or
ΔHo

(RTm)
− ΔSo

R
= ln C0
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If Eq. (3-22) is solved for Tm, we obtain

Tm = ΔHo

(ΔSo + R ln C0)
(3-23)

For the case under discussion, if C0 = 0.1 mM, Tm = 297 K.

In this brief discussion, we have neglected the fact that DNA is a polyelectrolyte

due to the negatively charged phosphodiester backbone. The polyelectrolyte nature of

DNA means that the ionic environment, particularly positively charged ions, strongly

influences the structure and behavior of DNA. Normally, a negatively charged poly-

mer such as DNA would exist as a rod because of the charge repulsion. However, we

know that DNA is packaged into a small volume in cells. This involves the twisting

of the double helix, the formation of loops, etc. Interactions with metal ions and pos-

itively charged proteins are necessary for this packaging to occur. Interested readers

should consult more complete descriptions of nucleic acids for information on this

interesting subject (3,7).

3.9 RNA

In principle, the structure of RNA can be discussed exactly as the discussion of DNA.

The principles are the same: hydrogen bonding between bases, stacking interactions,

and hydrophobic interactions determine the structure. Of course, a ribose rather than

a deoxyribose is present and uracil is substituted for thymine. In addition, several

modified bases are commonly found in RNAs. Unfortunately, understanding and pre-

dicting RNA structures is more complex than for DNA. Ultimately, this is because

there are several quite different biological functions for RNA and thus several quite

different types of RNA. Generally, RNAs do not form intermolecular double helices.

Instead, double helices are formed within an RNA molecule. These can be loops,

hairpins, bulges, etc. Some idea of the diversity of structures that can be formed is

shown in Figure 3-12, where an RNA molecule is shown, along with the different

types of structures that can be formed.

As with DNA, the RNA structures can be predicted reasonably well by considering

the nearest neighbor interactions. However, because of the diversity of the structures,

the models are more complex. Nevertheless, quite reasonable RNA structures can be

predicted using the thermodynamics derived from simple systems. We will not delve

further into RNA structures here, except to say that the principles of model build-

ing have been developed sufficiently here so that the interested reader can proceed

directly to current literature on this subject (11–14). As with DNA, metal ions play

an important role in the biological packaging of RNA.

Finally, the interactions between RNA and DNA are of obvious physiological rel-

evance. These have been studied quite extensively, but they are not nearly as well

understood as the interactions between DNA fragments and within RNA molecules.

Simple models are not yet available to calculate the properties of DNA–RNA struc-

tures. At this point, we will leave our discussion of thermodynamics of biological

systems, although many more interesting examples could be discussed.
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FIGURE 3-12. Proposed secondary structure of the group I intron of mouse-derived Pneumo-
cystis carinii. The areas indicate secondary structures within the intron, including base-paired

helices. Reproduced from J. SantaLucia, Jr. and D. H. Turner, Biopolymers 44, 309 (1997).
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PROBLEMS

3-1. .a. Glutamine is an important biomolecule made from glutamate. Calculate the

equilibrium constant for the reaction

Glutamate + NH3 ⇌ Glutamine + H2O

Use the standard Gibbs energies of formation in Appendix 4 to obtain the

standard Gibbs energy change for this reaction. Under physiological con-

ditions, the concentration of ammonia is about 10 mM. Calculate the ratio

[glutamine]/[glutamate] at equilibrium. (By convention, the concentration of

water is set equal to 1 since its concentration does not change significantly

during the course of the reaction.)

b. Physiologically, glutamine is synthesized by coupling the hydrolysis of ATP

to the aforementioned reaction:

Glutamate + NH3 + ATP ⇌ Glutamine + ADP + Pi

Calculate ΔGo and the equilibrium constant for this reaction under standard

conditions (see Appendix 4). Assume that NH3 and Pi are maintained at about

10 mM and that [ATP]/[ADP]= 1. What is the ratio of glutamate to glutamine

at equilibrium? What ratio is needed to convert glutamate to glutamine spon-

taneously, that is, to make ΔG < 0?

Do all calculations at 1 atm and 298 K. Although this is not the physiological

temperature, the results are not significantly altered.



74 APPLICATIONS OF THERMODYNAMICS TO BIOLOGICAL SYSTEMS

3-2. Adipose tissues contain high levels of fructose. Fructose can enter the glycolytic

pathway directly through the reaction

Fructose + ATP ⇌ Fructose–6–phosphate + ATP

Assume that the standard Gibbs energy change for this reaction with the same

standard state used in Table 3-1 is −17.0 kJ/mol. If fructose is substituted for

glucose in “glycolysis,” what would the overall reaction be for the conversion

of fructose to 2-glyceraldehyde, part one of glycolysis? What would the over-

all reaction be for the complete metabolic cycle? Calculate ΔGo and ΔG for

these two reactions. Assume the concentration of fructose is 5.0 mM and the

concentrations of the other metabolites are as in Table 3-2.

3-3. Glucose is actively transported into red blood cells by coupling the transport

with the hydrolysis of ATP. The overall reaction can be written as

ATP + H2O + n Glucose (outside) ⇌ n Glucose (inside) + ADP + Pi

If the ratio of [ATP]/[ADP] = 1 and [Pi] = 10 mM, what is the concentration

gradient, [glucose(inside)]/[glucose(outside)], that is established at 298 K? Cal-

culate this ratio for n = 1, n = 2, and n = n. Does this suggest a method for

determining the value of n? Use the value of ΔGo for the hydrolysis of ATP in

Appendix 5 for these calculations.

3-4. Derive the equation for the temperature dependence of the standard Gibbs

energy change for protein denaturation when ΔCP is not equal to zero.

As the starting temperature in the derivation, use the temperature at which

ΔGo = 0.

Hint: The easiest way to proceed is to calculate the temperature dependence of

ΔHo and ΔSo. These relationships can then be combined to give the temperature

dependence of ΔGo. The parameters in the final equation should be ΔCP, the

temperature, T, the temperature at which ΔGo = 0, Tm, and the enthalpy change

at the temperature where ΔGo = 0, ΔHo
Tm

.

3-5. Specific genes in DNA are often searched for by combining a radioactive

oligonucleotide, O, with the DNA that is complementary to a sequence in the

gene being sought. This reaction can be represented as

O + DNA ⇌ Double strand

For such experiments, the concentration of the oligonucleotide is much

greater than that of the specific DNA sequence. Assume that the probe is

5′-GGGATCAG-3′.

a. Calculate the equilibrium constant at 310 K for the interaction of the probe

with the complementary DNA sequence using the parameters in Table 3-9.
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b. Calculate the fraction of the DNA present as the double strand formed with

the probe if the concentration of the probe is 1.0 × 10−4 M and the tempera-

ture is 310 K.

c. Find the melting temperature for this double strand if the concentration of

the complementary DNA sequence is 1.0 nM. The melting temperature in

this case is when [double strand]/[DNA] = 1.

3-6. For an electrochemical cell (e.g., a battery), the reversible work is −nF𝜀 where

n is the number of moles of electrons involved in the chemical reaction, F is

the Faraday, and 𝜀 is the reversible voltage. (See Appendix 6). This relationship

is useful for considering coupled oxidation–reduction reactions in biochemical

systems.

a. Use this relationship and Eq. (2-49) to derive an equation relating the Gibbs

energy change for the reaction and the voltage of the cell. Your final equation

should contain the standard Gibbs energy change for the reaction, the concen-

trations of the reactants, and the electrochemical voltage, as well as constants.

b. The voltage at equilibrium is usually designated as 𝜀o. How is this related to

the standard Gibbs energy change for the reaction? How might the equilib-

rium constant for a biochemical reaction be determined from voltage mea-

surements? For the reaction

Malate + NAD+ ⇌ Oxaloacetate + NADH + H+

the voltage at equilibrium is −0.154 V at 298 K. Calculate the equilibrium

constant for this reaction. (F = 96,485 coulomb/mol and n = 2 for this reac-

tion.)





CHAPTER 4

Thermodynamics Revisited

4.1 INTRODUCTION

Thus far thermodynamics has been developed using elementary calculus involving a

single independent variable. This has been accomplished by specifying in the text that

other variables are held constant when taking a differential. For example, dE/dT = CV

at constant volume (Eq. (1–26)). A more general approach is possible by utilizing

multivariable calculus. This provides not only a more exact mathematical formula-

tion, but also relationships between thermodynamic variables that cannot be readily

accessed within the restricted approach utilized thus far.

4.2 MATHEMATICAL TOOLS

If a function has multiple independent variables, that is, y = f(x1, x2, x3, … ), then the

function can be differentiated with respect to each variable, holding all other indepen-

dent variables constant. This is called the partial derivative. For example, the partial

derivative with respect to x1 is written as (𝜕y/𝜕x1)x2,x3,… where the subscripts outside

the parentheses means these independent variables are held constant.

Consider the ideal gas law for one mole of gas, P(V,T) = (RT)/V. In this case,

(
𝜕P
𝜕T

)
V
= R

V
(4-1)

(
𝜕P
𝜕V

)
T
= −RT

V2
(4-2)

A function can be differentiated sequentially with respect to each variable. For

the case under discussion, the partial derivative of P with respect to T could be taken

and then the partial derivative with respect to V could be taken, or vice versa. An

important property of multiple partial differentiation is that the same result is obtained
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regardless of the order of the differentiation. For the case being discussed, this means

that [
𝜕

(
𝜕P
𝜕V

)
T

𝜕T

]
V

=

[
𝜕

(
𝜕P
𝜕T

)
V

𝜕V

]
T

(4-3)

This property will prove useful in later discussions.

Finally, an exact differential can be written for a function in terms of the partial

derivatives. For y = f(x1, x2, x3, … … ), the exact differential is

dy =
(

𝜕y

𝜕x1

)
x2,x3,…

dx1 +
(

𝜕y

𝜕x2

)
x1,x3,…

dx2 +
(

𝜕y

𝜕x3

)
x1,x2,…

dx3 + · · · (4-4)

For P = (RT)/V,

dP =
(
𝜕P
𝜕T

)
V

dT +
(
𝜕P
𝜕V

)
T

dV (4-5)

The exact differential can also be obtained by differentiating P = (RT)/V with respect

to each independent variable:

dP = R
V

dT − RT
V2

dV (4-6)

Examination of the aforementioned results shows that these two equations for the

exact differential are equivalent. Most thermodynamic functions can be written as

exact differentials in essence because their values are independent of the path. Quan-

tities that are path dependent such as heat and work cannot be written as exact differ-

entials.

Although we will not deal with integration of multiple variables, the principles are

similar. For example,

∫ ∫ f (x, y)dxdy

can be integrated first with respect to x with the appropriate integration limits and

then with respect to y, again with defined integration limits. As with differentiation,

the order of integration does not matter.

4.3 MAXWELL RELATIONS

We have previously shown the internal energy, E, can be expressed as a function of

the entropy, S, and the volume, V:

dE = TdS − PdV (4-7)
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From the definition of the exact differential:

dE =
(
𝜕E
𝜕S

)
V

dS +
(
𝜕E
𝜕V

)
S
dV (4-8)

Therefore, it follows that (𝜕E/𝜕S)V = T and (𝜕E/𝜕V)S = − P. These equations can be

differentiated further and since the order of differentiation does not matter:

[
𝜕

(
𝜕E
𝜕S

)
V

𝜕V

]
S

=

[
𝜕

(
𝜕E
𝜕V

)
S

𝜕S

]
V

Substitution of (𝜕E/𝜕S)V = T and (𝜕E/𝜕V)S = − P into the aforementioned equation

gives the Maxwell relation:

(
𝜕T
𝜕V

)
S
= −

(
𝜕P
𝜕S

)
V

(4-9)

Three other Maxwell relations exist that can be obtained from the enthalpy,

H(S, P) = E + PV, the Gibbs energy, G(P,T) = H − TS, and the Helmholtz energy,

A(V,T) = E − TS. These are briefly derived as follows.

dH = dE + PdV + VdP = TdS + VdP =
(
𝜕H
𝜕S

)
P
dS +

(
𝜕H
𝜕P

)
S
dP

Therefore, (
𝜕T
𝜕P

)
S
=

(
𝜕V
𝜕S

)
P

(4-10)

dG = dH − TdS − SdT = VdP − SdT =
(
𝜕G
𝜕P

)
T

dP +
(
𝜕G
𝜕T

)
P
dT

Therefore (
𝜕V
𝜕T

)
P
= −

(
𝜕S
𝜕P

)
T

(4-11)

dA = dE − TdS − SdT = −PdV − SdT =
(
𝜕A
𝜕V

)
T

dV +
(
𝜕A
𝜕T

)
V

dT

Therefore (
𝜕P
𝜕T

)
V
=

(
𝜕S
𝜕V

)
T

(4-12)

The Maxwell relations, Eqs. (4–9) through (4–12), permit the transformation between

many different variables. For example, the energy can be expressed in terms of the

variables P and T. Partial differentiation of Eq. (4-8) with respect to V at constant T
gives: (

𝜕E
𝜕V

)
T
=

(
𝜕E
𝜕S

)
V

(
𝜕S
𝜕V

)
T
+

(
𝜕E
𝜕V

)
S
= T

(
𝜕S
𝜕V

)
T
− P
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Insertion of Eq. (4-12) results in

(
𝜕E
𝜕V

)
T
= T

(
𝜕P
𝜕T

)
V
− P (4-13)

Eq. (4-13) is called a thermodynamic equation of state as it expresses the energy

derivative with respect to V in terms of the variables P and T.

As an example of the use of multivariable calculus, the temperature dependence

of the Gibbs energy is derived (analogous to Eq. (2–43) for ΔG). From the total dif-

ferential for G given earlier, (
𝜕G
𝜕T

)
P
= −S (4-14)

Since S is positive, G decreases when the temperature is raised at constant pressure.

The temperature dependence of G can also be expressed in terms of the enthalpy by

substituting for S using the definition of G, namely S = (H – G)/T:

(
𝜕G
𝜕T

)
P
− G

T
= −H

T

Also note by the rules of calculus,

[
𝜕

(
G
T

)
𝜕T

]
P

=
(

1

T

)(
𝜕G
𝜕T

)
P
− G

T2

Substitution into the preceding equation gives the Gibbs-Helmholtz equation, the

equivalent of Eq. (2–43): [
𝜕

(
G
T

)
𝜕T

]
P

= − H
T2

(4-15)

4.4 CHEMICAL POTENTIAL

Thus far, the implicit assumption has been made that the thermodynamic system con-

tains only a single component. However, systems of interest to chemists and biologists

typically contain many components. In an open system, that is, one in which the com-

position may vary, the use of multivariable calculus allows for an easy extension of

our previous formulations. For example, the exact differential for the Gibbs energy

as a function of T, P, and the number of moles of each substance, ni, G(T,P,n1, n2,

n3,… ), can be written as

dG = −SdT + VdP +
(
𝜕G
𝜕n1

)
T ,P,n2,n3,…

dn1 +
(
𝜕G
𝜕n2

)
T ,P,n1,n3,…

dn2 + · · · (4-16)
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The chemical potential of each component is defined as the partial derivative of the

Gibbs energy of each component with respect to the number of moles of that com-

ponent, with all other independent variables being held constant. Thus, the chemical

potential for n1, 𝜇1, is

𝜇1 =
(
𝜕G
𝜕n1

)
T ,P,n2,n3,…

(4-17)

The chemical potential, 𝜇, has been briefly introduced in the discussion of the rela-

tionship between the molar Gibbs energy and the activity (Eq. (2–33)). For rigorous

thermodynamic treatments of solutions (and mixtures in general), it is the function of

choice. For a single pure component, the chemical potential is the Gibbs energy per

mole. For a mixture, the Gibbs energy change will depend on the other components

present so that the other components and their concentrations must be specified.

Eq. (4-16) can then be conveniently expressed as:

dG = −SdT + VdP + 𝜇1dn1 + 𝜇2dn2 + 𝜇3dn3 + …

= −SdT + VdP + Σ𝜇idni (4-18)

where the sum is over all of the components present.

In order to apply the chemical potential to real systems, the relationship between

the chemical potential and the concentration of each component must be established.

The starting point for the development of this relationship is to consider the chem-

ical potential for mixtures of liquids. The chemical potential of an ideal gas (Gibbs

energy/mole) is (Eq. (2–28)) 𝜇i = 𝜇
o
i + RT ln (Pi/P0). Since the chemical potential of

the liquid and vapor must be equal at equilibrium, the chemical potential of the pure

liquid A is

𝜇
o
A = 𝜇

o
A gas

+ RT ln

(
PA0

P0

)

where PA0 is the vapor pressure of the pure liquid. For a mixture of liquids, the vapor

pressure is PA and the chemical potential of the liquid is

𝜇A = 𝜇
o
A gas

+ RT ln

(
PA

P0

)

Combining these two equations gives the chemical potential for A in a mixture:

𝜇A = 𝜇
o
A + RT ln

(
PA

PA0

)
(4-19)

The relationship between the ratio of pressures and the mole fraction, XA, was estab-

lished empirically by Francois Raoult, who found that for many binary mixtures of

liquids

PA = XAPA0 (4-20)
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FIGURE 4-1. Plot of the vapor pressure of liquids A and B and the total vapor pressure versus

the mole fraction of liquid B for a binary mixture of liquids that obey Raoult’s law.

The chemical potential can then be written as

𝜇A = 𝜇
o
A + RT ln XA (4-21)

Mixtures of liquids that obey Raoult’s law are called “ideal” solutions. This law is

obeyed quite well for very similar mixtures such as various benzene derivatives, but

large deviations are found for dissimilar liquids. An illustrative plot of the vapor pres-

sure of each liquid and the total vapor pressure versus the mole fraction for a binary

mixture of two liquids obeying Raoult’s law is shown in Figure 4-1.

Deviations from ideal solution behavior are taken into account by defining the

chemical potential in terms of the thermodynamic activity, a,

𝜇i = 𝜇
o
i + RT ln ai (4-22)

where 𝜇
o
i is the standard chemical potential, that is, the chemical potential when the

activity, ai, is equal to 1. The activity can be written as 𝛾 i Xi, where 𝛾 i is the activity

coefficient, an empirical parameter that takes into account deviations from ideality.

Two limiting cases merit special consideration. If one component of the mixture is

present in a much larger concentration than all other components so that it becomes

the solvent, then Raoult’s law is obeyed quite well. At the other extreme, in a binary

mixture where one liquid is the solvent, the other liquid is present in very low con-

centrations and obeys Henry’s law, PB = KB XB where KB is an empirical constant

that is not the equilibrium vapor pressure of pure B. An ideal solution for the solute

is a dilute solution that obeys Henry’s law and a chemical potential can be written

utilizing Henry’s law.

In order for the chemical potential to be useful in biological systems, solute chem-

ical potentials must be related to concentration scales normally used such as molality

and molarity. To make this connection, we note that for dilute solutions, the mole



4.5 PARTIAL MOLAR QUANTITIES 83

fraction of the solute, XB, can be approximated by nB/nA where nB and nA are the

number of moles of solute and solvent, respectively. If the molality concentration

scale is used, the number of moles of solute in a kg of solvent is mB and the number

of moles of the solvent is 1kg/MWA where MWA is the molecular weight of the sol-

vent A. Therefore, XB = mB MWA. Since the molality is related to the mole fraction

by a constant, the constant can be lumped into the standard chemical potential to give

𝜇i = 𝜇
o
i + RT ln mi for an ideal solution. This equation can be generalized to nonideal

solutions by use of the concepts of thermodynamic activity and activity coefficients

to give

𝜇i = 𝜇
o
i + RT ln ai = 𝜇

o
i + RT ln 𝛾imi (4-23)

Since molality has dimensions of moles per kg of solvent, Eq. (4-23) would seem to

imply that the natural logarithm of a number with dimensions is being taken. This,

however, is not the case as the molality in this equation is implicitly divided by the

standard state molality usually taken as 1 m. Despite this mathematical ambiguity, the

units of the concentration should always be specified when using Eq. (4-23). Stipula-

tion of the concentration units automatically specifies the concentration units of the

standard state. However, bear in mind that you are really dealing with a dimensionless

number.

The aforementioned discussion has utilized molality as the unit for concentration.

A similar argument could be advanced for utilization of molarity, which is more uni-

versally used by biologists. From a practical standpoint, the use of molarity has a

significant drawback because it is dependent on temperature and pressure as the vol-

ume of solvent varies with temperature and pressure. For this reason, the molality

is a better measure of concentration to use in the aforementioned equations. Fortu-

nately, for dilute aqueous solutions at room temperature, molarity and molality are

numerically approximately equal.

The definition of standard state becomes somewhat confusing with the aforemen-

tioned formulation. For Eqs. (4-22) and (4-23), the standard state is the hypotheti-
cal state of unit activity. For Eq. (4-23), a standard state must be chosen where 𝛾

approaches 1. This occurs when no interactions exist between solutes, that is, at infi-

nite dilution. In this case, the standard state is a hypothetical molality (or molarity)

of unity where 𝛾 =1. From a practical standpoint, the designation of standard state

does not have any effect on the use of the chemical potential as long as it is clearly

defined.

4.5 PARTIAL MOLAR QUANTITIES

We now digress to discuss the concept of partial molar quantities, which are of great

utility when considering mixtures. As an example, consider the volume. At constant

temperature and pressure, changes in volume, dV, for a mixture can be written as

dV =
(
𝜕V
𝜕n1

)
T ,P,n2,n3,…

dn1 +
(
𝜕V
𝜕n2

)
T ,P,n1,n3,…

dn2 + · · · (4-24)
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The partial molar volume for component n1, V1, is defined as

V1 =
(
𝜕V
𝜕n1

)
T ,P,n2,n3,…

(4-25)

Note that the partial molar volume is a function of the temperature, the pressure, and

the composition of the mixture. For a single component, the meaning of the partial

molar volume is clear: the partial molar volume is a constant at constant temperature

and pressure. For example, for water it is 18 cc at 298 K and 1 atm. However, if water

is mixed with another solvent, the partial molar volume of water will depend on the

amount of the second component. For example, if a small amount of water is added

to a large amount of pure ethanol, the partial molar volume of water is 14 cc. This is

because the water molecules tend to pack closer together to avoid contact with the

hydrocarbon portion of ethanol.

For a two component system, the total volume can be written as

V = V1n1 + V2n2 (4-26)

where the partial molar volumes are those at the specific composition n1 and n2. Par-

tial molar volume can be measured experimentally. If the total volume is measured

as a function of the composition, the slope dV/dn at any given composition is the par-

tial molar volume. This simple experiment works, but more accurate methods of data

analysis are required for determining the partial molar volume.

From these considerations, the chemical potential can be seen to be the partial

molar Gibbs energy (Eq. (4-17)). By analogy from the results obtained when consid-

ering the volume, for a two component system at constant temperature and pressure:

G = n1𝜇1 + n2𝜇2

Differentiating the above equation results in

dG = n1d𝜇1 + n2d𝜇2 + 𝜇1dn1 + 𝜇2dn2

However, from Eq. (4-18), dG = 𝜇1 dn1 + 𝜇2 dn2. In order for both of these results

to be correct, n1 d𝜇1 + n2 d𝜇2 = 0. This can be generalized to give the Gibbs-Duhem

equation:

Σnid𝜇i = 0 (4-27)

The sum extends over all of the components in the system.

The significance of this result is that the chemical potentials in a system are not

independent. A change in one chemical potential must be balanced by a change or

changes of the other chemical potentials. For example, in the two component system if

one of the chemical potentials increases, the other must decrease. The Gibbs-Duhem

equation is of great utility in dealing with mixtures.
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4.6 OSMOTIC PRESSURE

Osmotic pressure provides an example of the utility of the chemical potential. Cell

membranes are semipermeable; that is, they allow some molecules and ions to pass

freely through them, but do not permit others to pass. Typically large molecules such

as proteins and nucleic acids are confined inside the cell, whereas small ions and

molecules pass through the membrane. This is a gross simplification as biological

membranes have specialized transport and signaling mechanisms that make transport

in and out of the cell very complex. At equilibrium, the chemical potentials of the

various components should be equal on both sides of the membrane. For a completely

permeable membrane, this is achieved by transport through the membrane until the

concentrations (or more precisely activities) of all components are equal on both sides

of the membrane. However, for a semipermeable membrane, this cannot happen so

equilibrium must be achieved in a different way. Since the temperature is constant,

equilibrium is achieved by establishing a pressure difference across the membrane.

This pressure difference is called the osmotic pressure. This pressure difference is

created by solvent flowing into the solution containing the substance that cannot pass

through the membrane. This process is called osmosis.

The osmotic pressure can be calculated using the thermodynamic principles that

have been discussed. A simplified experimental setup demonstrating the phenomenon

of osmotic pressure is shown in Figure 4-2. In this experiment, a constant pres-

sure, P, is applied to the pure solvent. In order to keep the solutions on each side of

the semipermeable membrane at the same level, an additional pressure, the osmotic

pressure, Π, must be applied to the solution. The actual experimental equipment for

measuring osmotic pressure, an osmometer, is more complex and smaller and mea-

sures differences in solution level on the two sides of the semipermeable membrane.

The value of Π for a dilute solution of a macromolecule will now be derived. At

equilibrium the chemical potential of the solvent on each side of the membrane must

Semipermeable membrane

SolutionSolvent

P P + Π

FIGURE 4-2. Schematic representation of the concept of osmotic pressure. The solution con-

tains a substance that cannot pass through the membrane. In order for the chemical potential to

be equal for the solvent and solution, an additional pressure, Π, must be applied to the solution.
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be the same. If we consider a slight deviation from equilibrium, d𝜇, then

d𝜇 =
(
𝜕𝜇

𝜕P

)
Xs

dP +
(

𝜕𝜇

𝜕XS

)
P

dXS (4-28)

In this equation, P is the pressure and XS is the mole fraction of solvent.

At equilibrium, d𝜇= 0. Furthermore, since 𝜇 is the partial molar Gibbs energy,

(𝜕𝜇∕𝜕P)XS
is equal to the partial molar volume of the solvent, V , that is, the vol-

ume per mole of solvent. (This follows from the equation preceding Eq. (4-11).) In

addition, (𝜕𝜇/𝜕XS)P = RT/XS (Eq. (4-21)). Rearranging Eq. (4-28) for a system at

equilibrium gives

VdP = −
(

RT
XS

)
dXS (4-29)

This equation can be integrated as follows:

∫
P+Π

P
VdP = −RT∫

XS

1

dXS

XS

(4-30)

ΠV = −RT ln XS = −RT ln(1 − XM)

where XM is the mole fraction of the macromolecule. This derivation assumes a very

dilute solution so that XM is much less than 1. In this case, ln (1 – XM) ≈ − XM.

Furthermore, XM = nM/(nM + nS) ≈ nM/nS where the ni represent the moles of each

component. Putting this all together gives

ΠVnS = RTnM or Π = RTc (4-31)

The final rearrangement arises because VnS is the total volume of solvent and the

concentration of the macromolecule, c, is equal to nM/V. This simple relationship is

only valid for dilute solutions.

Eq. (4-31) permits the osmotic pressure to be calculated. Alternatively, if the

osmotic pressure is measured, the concentration of the macromolecule can be

determined. In fact, osmotic pressure measurements can be used to measure the

unknown molecular weight of a macromolecule since c = [g/(MW)]/Vsolv where g is

the grams of solute, MW is the molecular weight, and Vsolv is the volume of solvent

in liters. This is, in fact, the primary use of osmotic pressure measurements in the

laboratory. However, Eq. (4-31) is only valid at very low concentrations so that

the data analysis utilizes a more complex equation, which reduces to Eq. (4-31) as

the macromolecule concentration approaches zero. Osmotic pressures are not large

relative to atmospheric pressure: for a 10−4 M solution at room temperature Π is

about 2.5 x 10−3 atm. This is a significant pressure for a cell wall, however, and can

be measured quite accurately in laboratory experiments.

As an example of the role of osmotic pressure in biology, consider the immersion

of red blood cells in hypertonic, isotonic, and hypotonic solutions. Hypertonic means
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Hypertonic

Solution Solution Solution

Isotonic Hypotonic

FIGURE 4-3. Schematic representation of red blood cells in hypertonic, isotonic, and hypo-

tonic solutions. In hypertonic solutions, some of the solution inside the cell passes out of the

cell and the cell shrinks. In hypotonic solutions, solution from the exterior of the cell passes

into the cell, causing the cell to expand. In isotonic solutions, the flow of material between the

two sides of the membrane is exactly balanced.

the concentration of solutes that cannot pass through the red cell membrane are higher

on the outside than on the inside. Hypotonic is the converse, and isotonic means the

concentrations are the same outside and inside the cell. For hypertonic and hypotonic

solutions, an osmotic pressure exists across the membrane. In the case of hypertonic

solutions, water flows out from the cell to equalize the pressure and the cell shrinks,

whereas for hypotonic solutions, water flows into the cell, which expands and could

even burst. In fact, dilution of cells into solvent is a method for lysing cells. For

isotonic solutions, there is no osmotic pressure so that the flow of water into the cell

balances the flow out of the cell. This situation is shown schematically in Figure 4-3.

4.7 CHEMICAL EQUILIBRIA

The subject of chemical equilibrium has already been discussed in Chapter 2. How-

ever, we now examine chemical equilibria using the chemical potential as a tool. In

addition, the concepts of thermodynamic activity, activity coefficients, and standard

states are considered in more detail.

As a starting point, consider a chemical reaction such as

aA + bB ⇄ cC + dD (4-32)

At constant temperature and pressure:

dG = 𝜇AdnA + 𝜇BdnB + 𝜇CdnC + 𝜇DdnD (4-33)

Furthermore, the stoichiometry requires that

dnA

a
=

dnB

b
= −

dnC

c
= −

dnD

d
= −dx
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Therefore:

dG = (−a𝜇A − b𝜇B + c𝜇C + d𝜇D)dx

dG = −a(𝜇o
A

+ RT ln aA) − b(𝜇o
B

+ RT ln aB) + c(𝜇o
C

+ RT ln aC)

+ d(𝜇o
D

+ RT ln aD)

dG = Δ𝜇o + RT ln

(
ad

D
ac

C

ab
B

aa
A

)
with Δ𝜇o = c𝜇o

C
+ d𝜇o

D
− a𝜇o

A
− b𝜇o

B

At equilibrium at constant T and P, dG = 0 and

Δ𝜇o = −RT ln

(
ad

D
ac

C

ab
B

aa
A

)
= −RT ln K (4-34)

Equation (4-34) is equivalent to the more commonly cited equation,

ΔGo = −RT ln

(
ad

D
ac

C

ab
B

aa
A

)
= −RT ln K (4-35)

These equations are exact in that the standard state is precisely defined as the state

where all activities are equal to unity, and the standard Gibbs energy change, ΔGo, is

precisely the change in Gibbs energy when all reactants have an activity of unity. In

these equations, the activities are the activities at equilibrium. However, from a prac-

tical standpoint, these equations are not very useful as concentrations, not activities,

of reactants are measured. This problem is addressed by equating the activity to the

product of an activity coefficient multiplied by the concentration, 𝛾c:

ΔGo = −RT ln

(
𝛾

d
D
𝛾

c
C

𝛾
b
B
𝛾

a
A

)
− RT ln

(
cd

D
cc

C

cb
B

ca
A

)
= −RT ln K (4-36)

Any convenient measure of concentration can be used, as long as the system used

is self-consistent. However, the numerical values of K and ΔGo depend on the con-

centration scale chosen. As discussed earlier, molality is preferable to molarity. The

dimensionless activity coefficients are dependent on the specific composition of the

solution. If the composition is held constant, e.g., constant buffer concentration and

pH in biological systems, then the usual assumption is that the activity coefficient

ratio is constant and Eq. (4-36) becomes:

ΔGo + RT ln

(
𝛾

d
D
𝛾

c
C

𝛾
b
B
𝛾

a
A

)
= ΔGo′ = −RT ln

(
cd

D
cc

C

cb
B

ca
A

)
(4-37)

where the effective change in the standard Gibbs energy, ΔGo′, is defined by

Eq. (4-37). However, some ambiguity exists with regard to the standard state. The
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standard state can be considered to be the hypothetical state where the concentrations

are unity and the activity coefficients approach unity (infinite dilution). As previously

discussed, bear in mind that the concentrations in these equations are divided by

the standard state concentration of unity so that the ratio of concentrations is

dimensionless. In some case, activity coefficients can be measured and/or calculated.

However, most experimentalists choose to ignore the activity coefficients and keep

the solution environment the same during the course of their experiments. In the next

section, ionic solutions are discussed. This is one of the few cases where a relatively

simply calculation of the activity coefficient is possible.

4.8 IONIC SOLUTIONS

Ionic solutions require special consideration in the application of thermodynamics.

If a strong electrolyte is dissolved in water, it forms positive and negative ions. For

example, you might simply write down the chemical potential for a positive ion in

terms of its concentration. However, this makes no sense because positive ions can-

not exist in isolation. Their charge must be exactly balanced by those of negatively

charged ions. A reasonable way to proceed is to consider the sum of the chemical

potentials for the positive and negative ions:

𝜇+ + 𝜇− = 𝜇
o+ + 𝜇

o− + RT ln a+ + RT ln a−

= 𝜇
o+ + 𝜇

o− + RT ln 𝛾+ + RT ln 𝛾− + RT ln m+ + RT ln m− (4-38)

The molality, m, has been selected as the concentration scale. The individual molal-

ities can be readily calculated, but the two activity coefficients cannot be separated,

as they always appear as a product, i.e., ln [ 𝛾+ 𝛾−]. This problem can be addressed

by defining a mean activity coefficient, 𝛾±,

𝛾±
s = 𝛾+

c
𝛾−

d (4-39)

In this equation, s = c + d, where c and d are the stoichiometric coefficients for the

cations and anions, respectively, of the strong electrolyte. For example, they both are 1

for NaCl whereas for CaCl2, c = 1 and d = 2. With this definition of the mean activity

coefficient, the activity coefficient term in Eq. (4-34) becomes sRT ln 𝛾±. Thus the

determination of the mean activity coefficient is seen to require calculation of the

energy term in the chemical potential that determines sRT ln 𝛾±. Mean molalities and

activities can be calculated analogous to the mean activity coefficient:

m±
s = m+

cm−
d

a±
s = a+

ca−
d

The theory for calculation of the mean activity coefficient was developed in the late

1920s by Peter Debye and Erich Hückel, a graduate student at the time. Amazingly,
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FIGURE 4-4. Pictorial representation of the distribution of positive and negative ions in

one-one strong electrolyte solutions. Positive ions tend to be surrounded by negative ions and

vice versa. In the Debye–Hückel theory, the ions are assumed to be point charges.

the Debye–Hückel theory is still used today, with a few embellishments. The premise

is that interactions between charged ions are the only source of nonideality that need

to be considered. This assumption is valid because the energies associated with these

interactions are much greater than with any other type of interaction between ions

in solution such as short range van der Waals interactions. From a thermodynamic

standpoint, the addition to the chemical potential is the work required to create the

ionic state from an uncharged state.

The Debye–Hückel model treats an electrolyte solution as a collection of point

charges, as depicted schematically in Figure 4-4. Note that plus charges tend to be

surrounded by minus charges and vice versa. Thus each ion has an “ionic atmosphere”

surrounding it. The Coulomb potential, Ψi at a distant r from a charge zie is

Ψi =
( zie

4𝜋𝜀

)(
1

r

)
=

Zi

r
(4-40)

Here 𝜀 is the permittivity of the medium and Zi is defined by Eq. (4-40). For a pair

of charges, the potential energy of the system is Ψi multiplied by the second charge.

When multiple charged ions are present in solution, the potential of a single ion is

Ψi =
(

Zi

r

)
e−𝜅∕r (4-41)

The exponential appearing in this equation is due to the “screening” of the single

ion by the other ions in the system. The quantity 𝜅 is a length parameter that was

derived by Debye and Hückel and can be thought of as the effective radius of the

ionic atmosphere.
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For one-one electrolytes at room temperature in water,

𝜅(nm) = 0.305√
I

(4-42)

In this equation, I is the ionic strength calculated using the molal concentration scale.

The ionic strength is defined by

I =
(

1

2

)
Σzi

2mi (4-43)

The sum is over all ions present in solution, not only those involved in the mean

activity coefficient under consideration. The ionic strength is actually dimension-

less as each concentration should be divided by its standard concentration. However,

as noted previously, assigning units to the ionic strength provides an unambiguous

designation of the concentration scale being used. For an ionic strength of 0.01(m),

𝜅 = 3.0 nm. As would be expected, 𝜅 decreases as the concentration of ions increases,

that is, more “screening” takes place.

Debye and Hückel were able to obtain an explicit expression for the addition to

the chemical potential needed to determine the mean activity coefficient. For water

at 298 K, 1 atm, the final result is

log 𝛾± = −0.509|z+z−|
√

I (4-44)

Because of assumptions made in its derivation, Eq. (4-43) and Eq. (4-44) are valid

only at very low concentrations of salts, typically less than 10−2 M. The vertical

lines on the sides of the product of the two charges indicate the absolute value of the

product should be used. This equation is the limiting law, that is, the law as the salt

concentrations approach zero. One of the assumptions in the derivation is that the

ions are point charges, whereas real ions have a finite size. If this approximation is

removed, Eq. (4-44) becomes

log 𝛾± =
[−0.509|z+z−|√I]

[1 + B
√

I]
(4-45)

Here B is a constant related to the effective radius of an ion: in practice it is an

adjustable parameter that can be used to fit experimental data. At low ionic strengths,

the second term in the denominator becomes much less than one, and Eq (4-45)

reduces to Eq. (4-44). Attempts to extend Eq. (4-45) to higher concentration have

been made. For example, a linear term, CI, has been added, with C being an adjustable

parameter. However, the beauty of the Debye–Hückel theory is its relative simplicity,

and the model itself is an inadequate representation of the real system for concen-

trated solutions. A more complex model is required for real solutions, but thus far

none of the models developed have provided a widely accepted replacement for the

Debye–Hückel theory.
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FIGURE 4-5. Plot of the logarithm of the mean ionic activity coefficient for various elec-

trolytes versus the square root of the ionic strength (standard state is 1 m). The top four symbols

are for NaCl, HCl, LiCl, and KNO3 from top to bottom. The open squares are for H2SO4,

and the bottom two symbols are for MgSO4 and CuSO4. The lines are those predicted by the

Debye–Hückel theory for a +1,−1 electrolyte, a +1,−2 electrolyte, and a +2,−2 electrolyte,

again from top to bottom (Eq. (4-44)). The data are from N. G. Lewis and M. Randall M. J.
Am. Chem. Soc. 43, 1112 (1921). Figure courtesy of Professor T. G. Oas, Duke University.

Reproduced with permission.

Many tests of the Debye–Hückel theory have been carried out. For example, mean

ionic activity coefficients can be measured experimentally, primarily through electro-

chemical experiments. An introduction to electrochemistry is given in Appendix 6.

Although these measurements are not discussed in this treatise, some of the results

obtained are shown in Figure 4-5, where the logarithm of the mean ionic activity coef-

ficient is plotted versus the ionic strength for some selected salt solutions, including

+1,−1 electrolytes, a +1,−2 electrolyte, and +2,−2 electrolytes. The limiting slopes

predicted by the Debye–Hückel theory are also shown, and the data approach these

slopes at low salt concentrations. However, significant deviations are seen at concen-

trations above about 10−2 (molal) ionic strengths. The deviations occur at lower salt

concentrations for higher charged ions. This is predicted by the Debye–Hückel theory

and is due to the approximations used to obtain Eq. (4-44).

Another test of the Debye–Hückel theory can be made by measuring the salt

dependence of acid ionization constants. The dissociation of a weak acid can be writ-

ten as

HA ⇄ H+ + A− (4-46)

The equilibrium constant for this reaction can be obtained by a variety of methods,

for example a pH titration. The observed equilibrium constant is

Kobs =
[H+][A−]
[HA]

(4-47)
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The thermodynamic equilibrium constant is

K0 =
𝛾±

2[H+][A−]
[HA]

(4-48)

The activity coefficient of the uncharged species, HA, has been set equal to 1 in

Eq. (4-48). If the logarithm of Eq. (4-48) is taken and Eq. (4-44) is substituted for

the mean ionic activity coefficients, we obtain

log K0 = 2 log 𝛾± + log Kobs = −1.018
√

I + log Kobs (4-49)

Thus, a plot of log Kobs versus the square root of the ionic strength should be a straight

line with a slope of 1.018 in the limit of low salt concentrations and with an inter-

cept of log K0. As a practical matter, since the ionization constant varies with salt

concentration, so will the pH of solutions of weak acids and bases.

This chapter has dealt with some of the more important aspects of advanced ther-

modynamics but is far from complete. Interested readers should consult the references

at the end of the chapter for more complete treatments (cf. Refs. 1–4).
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PROBLEMS

4-1. Derive an expression for the temperature dependence of the Helmholtz energy

(A = E – ST), [𝜕(A/T)/𝜕T]V, in terms of the temperature and internal energy, E,

and the temperature.

4-2. Another thermodynamic equation of state is

(
𝜕H
𝜕P

)
T
= V − T

(
𝜕V
𝜕T

)
P

Use the Maxwell relations to derive this equation.

4-3. The partial molar volume of pure water and ethanol at 298 K and 1 atm are

18.0 cc and 58.0 cc, respectively. At a mole fraction of 0.500, the partial molar

volumes are 16.9 cc and 57.4 cc, respectively.
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a. Calculate the volume change if 3.00 moles of water are mixed with 3.00

moles of ethanol.

b. Derive an expression for the volume change when n1 moles of ethanol are

mixed with n2 moles of water with a final mole fraction of ethanol of X1.

4-4. Some osmotic pressure data are given in the following table. The solvent is water

and the temperature is 25.0∘ C. Obtain a molecular weight for the unknown

substance from these data. You will note that a different molecular weight is

obtained for each concentration of the unknown. How do you explain this? Can

you suggest a method for obtaining the true molecular weight. Estimate the true

molecular weight from these data.

Concentration (g/L) Osmotic Pressure (atm)

0.500 0.000341

1.00 0.000678

1.50 0.00101

2.00 0.00134

4-5. CaCl2 is a strong electrolyte that dissociates into calcium and chloride ions in

water.

a. Define the mean ionic activity coefficient for this salt.

b. Write down an expression for the chemical potential of CaCl2 in water in

terms of the standard chemical potentials, the mean ionic activity coefficient,

and the molality of CaCl2.

c. Calculate the ionic strength of a 0.01 m CaCl2 solution in water.

d. Calculate the mean ionic activity coefficient for a 0.01 m aqueous solution

of CaCl2 at 25∘ C.

e. NaCl is added to the CaCl2 solution at a concentration of 0.01 m. Calculate

the ionic strength of the resulting solution.

f. Calculate the mean ionic activity coefficient for CaCl2 at 25∘ C for the solu-

tion in e.

4-6. The solubility of salts in water is dependent on the ionic strength. For example,

BaSO4 is not very soluble in water. The equilibrium between the ions and the

solid can be written as:

Ba2+ + SO4
2− ⇄ BaSO4(s)

Derive an expression for the ionic strength dependence of the solubility product

Ksol = (Ba2+)(SO4
2−). The activity of the precipitated solid can be assumed

to be 1. Based on this analysis, would you expect the solubility to increase or

decrease as the ionic strength is increased.
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CHAPTER 5

Principles of Chemical Kinetics

5.1 INTRODUCTION

Thermodynamics tells us what changes in state can occur, that is, the relative stability

of states. For chemical reactions, it tells us what reactions can occur spontaneously.

However, thermodynamics does not tell us the time scale for changes in state or how

the changes in state occur; it is concerned only with the differences in the initial

and final states. In terms of chemical reactions, it does not tell us how the reaction

occurs, in other words, the molecular interactions that take place as a reaction occurs.

For biological reactions, the rates are critical for the survival of the organism, and a

primary interest of modern biology is the molecular events that lead to reaction. The

study of the rates and mechanisms of chemical reactions is the domain of chemical
kinetics. Thermodynamics provides no intrinsic information about mechanisms.

Many examples exist with regard to the importance of the time scale for chemical

reactions. For those of you having diamond jewelry, you may be unhappy to know

that the most stable state of carbon under standard conditions is graphite. So as you

read this, your diamond is turning to graphite, but fortunately the time scale for this

conversion is many hundreds of years. If graphite is more stable, why were diamonds

formed? The answer is that the formation of diamonds did not occur under standard

conditions: it is well known that at very high temperatures and pressures, graphite can

be converted to diamond. In the biological realm, one of the most critical reactions

is the hydrolysis of ATP to ADP and Pi. Thermodynamics tells us that the equilib-

rium lies far toward ADP and Pi. However, solutions of ATP are quite stable under

physiological conditions in the absence of the enzyme ATPase. A small amount of this

enzyme will cause rapid and almost complete hydrolysis. Virtually all metabolic reac-

tions occur much too slowly to sustain life in the absence of enzymes. Enzymes serve

as catalysts and cause reactions to occur many orders of magnitude faster. Studies of

the rates of hydrolysis under varying conditions allow us to say by what mechanism

the reaction may occur, for example, how the substrates and products interact with

the enzyme. Understanding the mechanism of biological processes is a research area

of great current interest.
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In this chapter, we will be interested in understanding some of the basic principles

of chemical kinetics, with a few examples to illustrate the power of chemical kinetics.

We will not delve deeply into the complex mathematics that is sometimes necessary

nor the many specialized methods that are sometimes used to analyze chemical kinet-

ics. Many treatises are available that provide a more complete discussion of chemical

kinetics (1–5). Because the examples used will be relatively simple, they will not

necessarily involve biological processes. The principles discussed, however, are gen-

erally applicable to all systems. The background presented here should be sufficient

to get you started on utilizing chemical kinetics and reading the literature with some

comprehension. The key three concepts that will be discussed first are rates of chem-
ical reactions, elementary reactions, and mechanisms of chemical reactions.

As a simple illustration, consider the reaction of hydrogen and iodine to give

hydrogen iodide in the gas phase:

H2 + I2 ⇌ 2 HI (5-1)

A possible mechanism for this reaction is for hydrogen and iodine to collide to pro-

duce hydrogen iodide directly. Another possible mechanism is for molecular iodine

to first dissociate into iodine atoms and for the iodine atoms to react with hydrogen

to produce hydrogen iodide. These possibilities can be depicted as

1.

H

2.

H
+

+

I
H
H

I

II
I

I
I

I

H I

H

H

I

H

I

H

H
H

H
H

I

H

I
I

These two possible modes of reaction are quite distinct in terms of the chemistry

occurring and are examples of two different mechanisms. We can also write these

mechanisms in a more conventional manner:

1. H2 + I2 ⇌ 2 HI Elementary step and balanced chemical reaction (5-2)

2. I2 ⇌ 2I Elementary step

2I + H2 ⇌ 2HI Elementary step

H2 + I2 ⇌ 2HI Balanced chemical reaction (5-3)
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As indicated, the individual steps in the mechanism are called elementary steps, and

they must always add up to give the balanced chemical reaction. In the first mecha-

nism, the elementary reaction and balanced chemical reaction happen to be the same,

but they are conceptually quite distinct, as we shall amplify later.

A very important point to remember is that a balanced chemical reaction gives no

information about the reaction mechanism. This is not so obvious in the aforemen-

tioned example, but consider the reaction

3Fe2+ + HCrO−
4
+ 7H+ ⇌ 3Fe3+ + Cr3+ + 4H2O

This clearly cannot be the reaction mechanism, as it would require the 11 reactants

to encounter each other simultaneously, a very unlikely event.

5.2 REACTION RATES

The rate of a chemical reaction is a measure of how fast the concentration changes. If

the concentration changes an amount Δc in time interval Δt, the rate of the reaction is

Δc/Δt. If the limit of smaller and smaller time intervals is taken, this becomes dc/dt.
If we apply this definition to Eq. (5-1), starting with H2 and I2 as reactants, the rate

could be written as −d[H2]/dt, −d[I2]/dt, or +d[HI]/dt. For every mole of hydrogen

and iodine consumed, 2 mol of hydrogen iodide are formed, so that this definition of

the rate does not provide a unique definition: the value of the rate depends on which

reaction component is under consideration. The rate of appearance of HI is twice

as great as the rate of disappearance of H2 or I2. This ambiguity is not convenient,

so a convention is used to define the reaction rate, namely, the rate of change of the

concentration divided by its coefficient in the balanced chemical reaction. This results

in a unique reaction rate, R, for a given chemical reaction. By convention, R is always

positive. For the case under consideration,

R = −
d[H2]

dt
= −

d[I2]
dt

= 1

2

d[HI]
dt

Consider a more complex chemical equation:

2N2O5 → 4NO2 + O2

In this case, the reaction rate is

R = −1

2

d[N2O5]
dt

= 1

4

d[NO2]
dt

=
d[O2]

dt

Measuring the concentration as it changes with time can be very difficult, and some

of our greatest advances in understanding chemical reactions have resulted from the

development of new techniques for measuring the rates of chemical reactions, par-

ticularly the rates of very fast reactions. The most convenient method of measuring
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reaction rates is to mix the reactants together and to measure the subsequent change

in concentrations continuously using a spectroscopic technique such as light absorp-

tion. It is sometimes not possible to find a physical property to monitor continuously,

so it may be necessary to stop the reaction and measure the concentration chemically

or through radioactive tracers. We will not dwell on this point, except to stress that

measuring the rate of a chemical reaction may not be trivial.

Once a method has been established for determining the reaction rate, the next

step is to measure the dependence of the reaction rate on the concentrations of the

reactants. The dependence of the rate on the concentrations is called the rate law. The
rate law cannot be predicted from the balanced chemical equation. It must be deter-
mined experimentally. A few examples will serve to illustrate this point. Consider the

hydrolysis of ATP catalyzed by an ATPase. The overall reaction is

ATP → ADP + Pi (5-4)

and the observed dependence of the rate on concentration of ATP and enzyme in some

cases is

R =
k[E0]

1 + Km

[ATP]

(5-5)

where [E0] is the total enzyme concentration and k and Km are constants. The rate

law certainly cannot be deduced from the overall chemical reaction. In fact, the rate

law is not the same for all ATPases. Many different ATPases are found in biological

systems, and they do not all hydrolyze ATP by the same mechanism. As another

example, consider the simple reaction

H2 + Br2 → 2 HBr (5-6)

The experimentally determined rate law is

R =
k[H2][Br2]1∕2

1 + K[HBr]
[Br2]

(5-7)

As a final example, consider the redox reaction

5 Br− + BrO−
3
+ 6 H+ → 3 Br2 + 3 H2O (5-8)

The observed rate law is

R = k[Br−][BrO−
3
][H+]2 (5-9)

These examples should emphasize the futility of attempting to predict the rate law

from the balanced chemical equation.

The exponent of the concentration in the rate law is the reaction order with respect

to that component (i.e., first order, second order, etc.). In some cases, such as Eq. (5-9),

the concept of reaction order has a simple meaning. The rate law is first order with



5.3 DETERMINATION OF RATE LAWS 101

respect to Br− and BrO−
3

, and second order with respect to H+. For more complex rate

laws, such as Eqs. (5-5) and (5-7), the concept of reaction order cannot be used for all

of the concentrations, except in limiting conditions. For Eq. (5-7), the rate law is 1/2

order with respect to Br2 at high concentrations of Br2 and/or low concentrations of

HBr. The lowercase k’s in the rate laws are called rate constants. The dimensions of

rate constants can be deduced from the rate law by remembering that the rate is usually

measured as M/s. In Eq. (5-9), k, therefore, has the dimensions of M−3s−1. The capital

K’s in the aforementioned equations also are constants, but they are combinations of

rate constants rather than individual rate constants.

5.3 DETERMINATION OF RATE LAWS

Many different methods exist for determining rate laws. Only a few methods are

considered here. With the routine use of computers, numerical integration of the

differential equations and simultaneous fitting of the data are possible. However, as

with any experimental approach, it is best to first fit the data to simple models before

embarking on complex computer fitting. Computer programs will always fit the data,

but it is important to be sure that the fit is a good one and the proposed rate law makes

sense.

Probably, the simplest and still often used method is the determination of initial

rates. With this method, the rate of the reaction is measured at the very beginning of

the reaction under conditions where the decrease in the concentrations of the reac-

tants is so small that their concentrations in the rate law can be assumed to be the

starting concentrations. In practice, this means that the concentrations should not

change by more than a few percent. To illustrate the method, let us assume the rate

law is

R = k(c1)a(c2)b (5-10)

If c2 is held constant and the initial rate is measured for different concentrations

of c1, the coefficient a can be determined. For example, if the concentration c1 is

doubled and the rate increases by a factor of 4, a must be equal to 2. The same

type of experiment can be carried out to determine b, namely, c1 is held constant

and c2 is varied. The rate constant can readily be calculated, once the coefficients

a and b are known, from the relationship k = R/[(c1)a(c2)b]. The determination of

initial rates is especially useful for studying enzymatic reactions as we shall see

later.

One of the most useful methods for determining the rate law is integration of the

rate equation to obtain an analytical expression for the time dependence of the con-

centrations. The analytical equation is then compared with experimental data to see

if it accurately describes the time dependence of the concentrations. As mentioned

previously, computers can perform this integration numerically. We will consider two

examples of integrated rate equations to illustrate the method.
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The decomposition of nitrogen pentoxide can be written as

N2O5 → 2NO2 +
1

2
O2 (5-11)

Assume that the decomposition is a first-order reaction:

R = −
d[N2O5]

dt
= k[N2O5] (5-12)

This equation can easily be integrated

−
d[N2O5]
[N2O5]

= kdt

or

−

[N2O5]

∫
[N2O5]0

d[N2O5]
[N2O5]

= ∫
t

0

kdt

and

ln

( [
N2O5

]
[N2O5]0

)
= −kt (5-13)

In Eq. (5-13), [N2O5]0 is the concentration when t = 0. As illustrated in Figure 5-1,

this equation predicts that a plot of ln[N2O5] versus t should be a straight line with a

slope of −k. The data, in fact, conform to this rate equation under most conditions.

This analysis can also be carried out for higher order reactions. Hydrogen iodide

will react to give hydrogen and iodine under certain conditions:

2 HI → H2 + I2 (5-14)

The rate law is

R = −1

2

d[HI]
dt

= k[HI]2 (5-15)

Time

[N2O5]0

In
[N

2O
5] Slope = –k

FIGURE 5-1. Demonstration of first-order kinetics. Plot of ln[N2O5] versus time according

to Eq. (5-13). The straight line has a slope of −k and an intercept on the y axis of ln[N2O5]0.
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1/[HI]0
1/

 [H
I]

Slope = 2k

Time

FIGURE 5-2. Demonstration of second-order kinetics. Plot of 1/[HI] versus time according

to Eq. (5-16). The straight line has a slope of 2k.

Rearrangement of this equation gives

−d[HI]
[HI]2

= 2k dt

which can be integrated to give

1

[HI]
− 1

[HI]0
= 2kt (5-16)

Here [HI]0 is the concentration when t =0. As illustrated in Figure 5-2, this equation

predicts that a plot of 1/[HI] versus t should be a straight line with a slope of 2k. In

addition, the experimental data conform to this prediction.

It is frequently, but not always, possible to integrate rate equations analytically.

Good experimental design can help to make the rate law relatively simple and there-

fore easy to integrate. In fact, experienced researchers will try to make the reaction

first order whenever possible. This might seem like a major restriction but it is not.

It is often possible to convert complex rate laws to conform to pseudo-first-order
kinetics. For example, assume the rate law is

R = k(c1)f (c2)

where f(c2) is a function of the concentration c2. The function could be very complex

or a simple power of the concentration—it does not matter. If the concentration c2 is

made much larger than the concentration c1, then it can be assumed to remain constant

throughout the reaction, and the rate law becomes

R = k′(c1)

where k′ = kf (c2). The “constant” kf(c2) is called a “pseudo” first-order rate constant

since it is constant under the experimental conditions used, but actually depends on
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the concentration c2. If the concentration of c2 is varied, the dependence of f(c2) on

c2 can be determined. It might seem restrictive to have a high concentration of c2, but

in practice it is often sufficient to have the concentration of c2 only about a factor of

10 higher than c1. Careful experimental design can make the job of determining the

rate law much easier!

In determining the rate law, it is often necessary to use a broad range of experimen-

tal conditions before trying to interpret the rate law in terms of a chemical mechanism.

As an illustration, consider the reaction

I− + OCl− → OI− + Cl− (5-17)

At constant pH, the rate law determined experimentally is

R = k[I−][OCl−] (5-18)

If the pH is varied, it is found that k also varies. It was determined that k = k′∕[OH−],
where k′ is a constant. Thus, a more complete rate law is

R = k′[I−][OCl−]
[OH−]

(5-19)

The more information that can be determined about the concentration dependence of

the rate the better the mechanism that can be postulated.

5.4 RADIOACTIVE DECAY

A good example of a first-order rate process is radioactive decay. Radioactive isotopes

are frequently used in biological research. For example, the radioactive isotope of

phosphorus, 32P, gives off radiation according to the reaction

32P → 32S + β− (5-20)

where 𝛽
− is a high-energy electron. The rate law for radioactive decay is

−
d[32P]

dt
= k[32P] (5-21)

Integration of this rate law as performed previously (Eq. (5-13)) gives

[32P] = [32P]0e−kt (5-22)

or

ln

( [
32P

]
[32P]0

)
= −kt
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The rate of radioactive decay is usually given in terms of the half-life of the radioac-

tive decay; in this case, the half-life is 14.3 days. In terms of the integrated rate law,

Eq. (5-22), when half of the original radioactivity has decayed, ln(1/2) = −kt, or the

half-life for decay is t1/2 = (ln2)/k.

Thus, for radioactive decay, the half-life is constant. It does not matter when we

start counting or how much radioactivity we start with, the radioactivity will decay

to half of its original value in 14.3 days. This is a special property of first-order rate

processes and is not true for other reaction orders where the half-life depends on the

concentrations of the reactants. This is very convenient because regardless of when

we start observing the rate of reaction, at t = 0, or at t = any value, the integrated rate

law is a simple single exponential.

5.5 REACTION MECHANISMS

In general, many mechanisms are possible for a given reaction. Mechanisms are pro-

posals for how the reaction occurs. A proposed mechanism must be consistent with

the experimentally observed rate law, but this is usually true for many mechanisms.

Kinetic studies can disprove a mechanism but cannot prove a mechanism. As a practi-

cal matter, the simplest mechanism consistent with all of the data is most appropriate,

but at the end of the day, all that can be said is that a specific mechanism is consistent

with known data. It is not possible to say that this must be “the” mechanism.

A mechanism consists of a combination of elementary steps, which must sum

up to give the overall reaction. For an elementary step, the order and molecularity,

the number of molecules involved in the reaction, are the same. Therefore, for ele-

mentary steps, the rate law can be written as the product of the concentrations of all

reactants, each raised to the power of their stoichiometric coefficient, multiplied by a

rate constant. Some examples of elementary steps and associated rate laws are given

as follows:

H2 + I2 → 2 HI, R = k[H2][I2]

2 I + H2 → 2 HI, R = k[I]2[H2]

O3 → O2 + O, R = k[O3]

Remember, rate laws can be derived from the chemical equation only for elemen-

tary steps and never for the balanced chemical equation of the overall reaction. If an

elementary reaction is reversible, then the rate law is the difference between the rates

of the forward and reverse reactions. Therefore, for the elementary step

2A + B
kf
⇌
kr

C + D

R = kf[A]2[B] − kr[C][D]

We now have two criteria for a possible mechanism: (1) it must be consistent with

the observed rate law and (2) the elementary steps must add up to give the overall
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balanced chemical reaction. Let us return to the two proposed mechanisms for the

reaction of H2 and I2, Eqs. (5-2) and (5-3). The first mechanism contains only a single

elementary step so that the rate law is

R = kf[H2][I2] − kr[HI]2 (5-23)

The second mechanism contains two elementary steps so that some assumptions must

be made to derive the rate law. We will assume that iodine atoms are in rapid equi-

librium with molecular iodine or to be more specific that this equilibrium is adjusted

much more rapidly than the reaction of iodine atoms with molecular hydrogen. Fur-

thermore, the concentration of iodine atoms is assumed to be much less than that of

molecular iodine. These assumptions are, in fact, known to be correct. If we now

consider the second elementary step in the mechanism,

2 I + H2

k1
⇌
k2

2 HI

the rate law can be written as

R = k1[I]2[H2] − k2[HI]2 (5-24)

but since the first step is always at equilibrium throughout the course of the reac-

tion, [I]2 = K[I2], where K is the equilibrium constant for the dissociation reaction.

Substituting this relationship into Eq. (5-24) gives

R = k1K[I2][H2] − k2[HI]2 (5-25)

Equations 5-23 and 5-25 are identical in form as only the definitions of the constants

are different, kf = k1K and kr = k2. Thus, we have shown that both mechanisms are

consistent with the experimentally determined rate law, and therefore both are possi-

ble mechanisms. Even for this simple reaction, there remains a debate as to which is

the more likely mechanism.

It is easy to postulate a third possible mechanism with the following elementary

steps:

H2 ⇌ 2 H

2 H + I2 ⇌ 2 HI

By analogy with the mechanism involving iodine atoms, it can be seen that this

mechanism would give the rate law of Eq. (5-25) with K now being the dissocia-

tion constant for molecular hydrogen in equilibrium with hydrogen atoms. However,

K is a known constant and if this constant is combined with the value of k1K deter-

mined experimentally, k1 can be calculated. It is found that the value of k1 is much

larger than the rate constant characterizing the maximum rate at which two hydrogen

atoms and molecular iodine encounter each other in the gas phase. Therefore, this
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mechanism can be ruled out as inconsistent with well-established theory. Thus, we

have a third criterion for disproving a mechanism.

As a second example of how mechanisms can be deduced, let us return to the

reaction of I− and OCl− to produce OI− and Cl−, Eq. (5-17). The experimentally

determined rate law is given by Eq. (5-19). What is a possible mechanism? One pos-

sibility is the following scheme:

OCl− + H2O ⇌ HOCl + OH− Fast, at equilibrium

I− + HOCl
k2−−→HOI + Cl− Slow

OH− + HOI ⇌ H2O + OI− Fast

OCl− + I− → OI− + Cl− Overall reaction (5-26)

This mechanism is consistent with the balanced chemical equation. Now we must

show that it is consistent with the observed rate law. The rate of a reaction is deter-

mined by the slowest step in the mechanism. Therefore, the rate of the overall reaction

is given by the rate of the second elementary step:

R = k2[I−][HOCl] (5-27)

If the first step is assumed to be fast and the concentration of HOCl small relative

to that of I− and Cl−, then the concentration of HOCl can be calculated from the

equilibrium relationship

K = [HOCl][OH−]
[OCl−]

[HOCl] = K[OCl−]
[OH−]

Insertion of this relationship into Eq. (5-27) gives

R =
k2K[I−][OCl−]

[OH−]
(5-28)

which is the observed rate law. Since this mechanism is consistent with the observed

rate law and the balanced chemical equation, it is a possible mechanism.

You may very well be wondering if the creation of a mechanism is black magic. It

is true that imagination and knowledge are important factors, but logic can be used. A

species in the denominator results from a fast equilibrium prior to a rate-determining

step. Therefore, what needs to be found is a first step involving one of the reactants

that produces the desired species, in this case OH−. The other product of the first

step must then react with the second reactant. The remainder of the steps are fast

reactions that are necessary to produce a balanced chemical reaction. Note that none

of the steps after the rate-determining step play a role in determining the rate law.

This is one of the simplest types of mechanisms, fast equilibria prior to and after a
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rate-determining step. Nature is not always so obliging, and more complex mecha-

nisms in which several steps occur at comparable rates are often necessary to account

for experimental findings.

Here is another mechanism, quite similar in concept:

OCl− + H2O ⇌ HOCl + OH− fast, at equilibrium

I− + HOCl
k2−−→ ICl + OH− slow

ICl + 2 OH− ⇌ OI− + Cl− + H2O fast

OCl− + I− → OI− + Cl− overall reaction (5-29)

Obviously, this gives the same rate law as the mechanism in Eq. (5-26), as all events

prior to the rate-determining step are the same. However, the chemistry is quite dif-

ferent. In the first case, iodide attacks the oxygen; in the second case, it attacks the

chlorine. These two mechanisms cannot be distinguished by kinetics. Both are equally

consistent with the data.

Thus far, we have considered mechanisms in which OCl− is the initial reactant.

Now let us look at mechanisms in which I− is the initial reactant such as

I− + H2O ⇌ HI + OH− fast, at equilibrium

HI + OCl− → ICl + OH− slow

By analogy, it should be clear that this mechanism would give the correct rate law,

and rapid reactions after the rate-determining step can be added to give the correct

balanced chemical equation. However, the equilibrium constant for the first step is

known, and if this is combined with the results of the kinetic experiments, the rate

constant for the rate-determining step would exceed the theoretically possible value.

This is because the concentration of HI is much, much smaller than that of HOCl.

Thus, mechanisms of this type can be excluded on the basis of theoretical concepts.

These two examples illustrate how mechanisms can be related to the results of

kinetic experiments. It is a great challenge to devise mechanisms. Once a mecha-

nism is postulated, it is the job of the kineticist to devise experiments that will test

the mechanism, often disproving it and requiring postulation of a new mechanism.

However, it is important to remember that no matter how convincing the arguments, a

mechanism cannot be proved. Thus far, we have considered very simple reactions that

are not biological, as biological reactions are typically very complex. The purpose of

this discussion has been to illustrate the principles and concepts of chemical kinetics.

We will later consider the kinetic analysis of enzymatic reactions, a very relevant and

timely subject.

5.6 TEMPERATURE DEPENDENCE OF RATE CONSTANTS

Before discussing the kinetic analyses of biological reactions, a few additional con-

cepts will be described. Reaction rates are often dependent on the temperature, and
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typically reactions go faster as the temperature increases. The first quantitative treat-

ment of the temperature dependence of reaction rates was developed by Arrhenius

in the late 1800s. He proposed that the temperature dependence of the rate constant

could be described by the equation

k = A exp

(
−

Ea

RT

)
(5-30)

where A is a constant, Ea is the activation energy, R is the gas constant, and T is the

Kelvin temperature. This equation predicts that a plot of ln k versus 1/T should be a

straight line with a slope of −Ea/R. This behavior is, in fact, followed in most cases.

Equation 5-30 can be differentiated with respect to temperature to give

d(ln k)
dT

=
Ea

RT2
(5-31)

This equation can be integrated to give

ln

(
kT2

kT1

)
=

(
Ea

R

)
(T2 − T1)

T1T2

(5-32)

Equation 5-32 permits the rate constant to be calculated at any temperature if it is

known at one temperature and the activation energy has been determined. Note that

these equations are similar in form to those describing the temperature dependence of

the equilibrium constant except that the activation energy has replaced the standard

enthalpy of reaction. In some cases, the activation energy may change with tempera-

ture, thereby making the analysis more complex.

The physical model behind the Arrhenius equation is that an energy barrier, Ea,

must be overcome in order for the reaction to occur. This is shown conceptually in

Figure 5-3. The reaction “path” or “coordinate” can be envisaged as the approach

of the reactants to each other that results in the lowest activation energy. The energy

difference between products, P, and reactants, R, isΔE. For simple reactions in the gas

phase, the energy can be calculated as a function of the distance between reactants.

These calculations define an energy surface, and the dynamic course of the reaction

on this energy surface can be determined. Even in the gas phase, this can only be

done for very simple reactions. For reactions in solution, this can only be considered

a conceptual model.

You might guess from your knowledge of thermodynamics that the energy is prob-

ably not the best parameter to use to characterize the dynamics of a reaction. A

theory has been developed that instead discusses the reaction path in terms of the

Gibbs energy. This theory is called transition state theory. The basic postulate is that

a transition state is formed in the course of the reaction, which is in equilibrium with

the reactants. This model is shown schematically in Figure 5-4. In transition state

theory, the reactants go through a transition state that is at a higher Gibbs energy than

the reactants. They must go over this Gibbs energy barrier to produce products. In
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Reactants ΔE

Products

Reaction path

E

Ea

FIGURE 5-3. Schematic representation of the energy, E, versus the “reaction path” during

the course of a reaction as discussed in the text. The definition of the activation energy, Ea, is

indicated.

Reactants

TS

ΔG°

ΔG°

Products

Reaction path

G°

=

FIGURE 5-4. Schematic representation of the standard Gibbs energy, Go, versus the “reaction

path” during the course of a reaction as discussed in the text. The Gibbs energy of activation,

ΔGo‡, is defined in this diagram. The transition state at the maximum of the Gibbs energy is

indicated by TS. The reactants and products are at minima in the Gibbs energy curve.

Figure 5-4, the difference in Gibbs energy between products and reactants is ΔGo,

consistent with thermodynamic principles. The Gibbs energy difference between the

transition state and reactants, ΔGo‡, is called the standard Gibbs energy of activation.

In terms of transition state theory, the rate constant can be written as

k =
(

kBT

h

)
exp

(
−ΔGo‡

RT

)
(5-33)
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where kB is Boltzmann’s constant and h is Planck’s constant. (A more exact derivation

includes an additional parameter, the transmission coefficient, which is often approx-

imately equal to 1.) Since ΔGo‡ = ΔHo‡ − TΔSo‡, the rate constant can be restated

as

k =
(

kBT

h

)
exp

(
ΔSo‡

R

)
exp

(
−ΔHo‡

RT

)
(5-34)

Here ΔSo‡ is the standard entropy of activation and ΔHo‡ is the standard enthalpy of

activation.

If the standard entropy and enthalpy of activation are assumed to be temperature

independent, Eq. (5-34) can be differentiated to give

d(ln k)
dT

= (ΔHo‡ + RT)
RT2

(5-35)

Thus, transition state theory predicts a temperature dependence of the rate constant

very similar to the Arrhenius theory with Ea = ΔHo‡ + RT. Since RT is usually

small relative to the standard enthalpy of activation, the activation energy and stan-

dard enthalpy of activation are usually quite similar. The Arrhenius and transition

state formulations cannot be differentiated by this small difference in the temperature

dependence since both the activation energy and the standard enthalpy of activation

can be temperature dependent. From our knowledge of thermodynamics, we know

that the enthalpy of activation is temperature dependent if a heat capacity difference

exists between the transition state and the reactants. If the temperature dependence

of the rate constant is to be analyzed in terms of transition state theory, it is more

convenient to plot ln(k/T) versus 1/T as d ln(k/T)/dT = ΔHo‡/(RT2) or d ln(k/T)/d(l/T)

= −ΔHo‡/R.
A simple derivation of Eq. (5-33) is possible. The concentration of the transition

state, TS, can be calculated from the relationship

[TS]
[Reactants]

= exp

(
−ΔGo‡

RT

)

where [Reactants] represents the concentrations of the reactants raised to the appro-

priate powers for the stoichiometric equation of the elementary step. The rate of the

reaction is the concentration of the transition state multiplied by the frequency with

which it passes over the Gibbs energy barrier. This frequency of passage over the

barrier can be derived from an analysis of the reaction coordinate with statistical

mechanics and is given by kBT/h. Therefore, the rate of reaction is

R =
(

kBT

h

)
[TS] = [Reactants]

(
kBT

h

)
exp

(
−ΔGo‡

RT

)
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Reactants

TS

TS

Products

Reaction path

G°

FIGURE 5-5. Schematic representation of the standard Gibbs energy, Go, versus the “reaction

path” during the course of a two-step reaction. The intermediate, I, is at a minimum in the

Gibbs energy whereas the transition state, TS, for each step is at a maximum. The reactants

and products are also at minima in the free energy curve.

The rate constant in Eq. (5-33) follows directly from the aforementioned equation.

This nonrigorous derivation provides a conceptual framework for the theory.

If a reaction goes through an intermediate, the intermediate would correspond

to a minimum in the Gibbs energy, and each elementary step would have its own

transition state. This is shown schematically in Figure 5-5 for a sequence of two ele-

mentary steps. The step with the highest Gibbs energy barrier is the rate-determining

step.

Transition state theory is a very useful method for correlating and understanding

kinetic studies. Because the framework of the theory is similar to thermodynamics,

this produces a consistent way of discussing chemical reactions. The entropy

and enthalpy of activation are often discussed in molecular terms. It should be

remembered that, for kinetics as with thermodynamics, such interpretations should

be approached with extreme caution.

5.7 RELATIONSHIP BETWEEN THERMODYNAMICS AND KINETICS

Obviously, the principles of thermodynamics and kinetics must be self-consistent. In

fact, this places some useful restrictions on the relationships between rate constants.

In order to see how rate constants are related to equilibrium constants, consider the

elementary step

A + B
k1
⇌
k2

AB (5-36)

The rate of this reaction is

R = −d[A]
dt

= k1[A][B] − k2[AB] (5-37)



5.7 RELATIONSHIP BETWEEN THERMODYNAMICS AND KINETICS 113

At equilibrium, the net rate of reaction must be zero. If R = 0, k1[A]e[B]e = k2[AB]e,

where the subscript e designates the equilibrium concentration. Thus, we see that

K =
k1

k2

=
[AB]e

[A]e[B]e
(5-38)

In this case, the equilibrium constant, K, is equal to the ratio of rate constants. Similar

relationships between the rate constants and equilibrium constants can be found for

more complex situations by setting the net rate equal to zero at equilibrium.

If Eq. (5-38) is cast into the framework of transition state theory, we obtain

K = exp

[
−

(
ΔGo‡

1
− ΔGo‡

2

)
RT

]
= exp

(
−ΔGo

RT

)
(5-39)

This result indicates the relationship between the standard Gibbs energy changes of

activation and the standard Gibbs energy change for the reaction. This relationship

can also be seen in the diagram of the Gibbs energy versus reaction path (Fig. 5-4).

A more subtle relationship can be found if reaction cycles occur because of the

principle of detailed balance or microscopic reversibility. This principle states that a

mechanism for the reaction in the forward direction must also be a mechanism for the

reaction in the reverse direction. Furthermore, at equilibrium, the forward and reverse

rates are equal along each reaction pathway. This means that once we have found a

possible mechanism for the reaction in one direction, we have also found a possible

mechanism for the reaction in the other direction.

To illustrate this principle, consider the following triangular reaction mechanism:

A

BC
k2

k−1

k−2

k−3

k1
k3

According to the principle of detailed balance, each of the individual reactions

must be at equilibrium when equilibrium is attained, or

k1[A]e = k−1[B]e
k2[B]e = k−2[C]e
k3[C]e = k−3[A]e

If the right-hand sides of these equations are multiplied together and set equal to the

left-hand sides of the equations multiplied together, we obtain

k1k2k3 = k−1k−2k−3 (5-40)
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Thus, we find that the six rate constants are not independent, nor are the three equi-

librium constants! This result may seem obvious, but many people have violated the

principle of detailed balance in the literature. It is important to confirm that this prin-

ciple is obeyed whenever reaction cycles are present.

5.8 REACTION RATES NEAR EQUILIBRIUM

The kinetics of reactions close to equilibrium merit special consideration. As we shall

see, the rate laws become quite simple near equilibrium, and methods exist that permit

very fast reactions to be studied near equilibrium. We will begin with an elementary

step that is a reversible first-order reaction, such as protein denaturation in the middle

of the transition from the native to the denatured state:

N
kf
⇌
kr

D (5-41)

The rate equation characterizing this system is

−d[N]
dt

= kf[N] − kr[D] (5-42)

We will now introduce new concentration variables; that is, we will set each concen-

tration equal to its equilibrium value plus the deviation from equilibrium:

[N] = [N]e + Δ[N]

[D] = [D]e + Δ[D]

Note that the equilibrium concentrations are constants, independent of time, and mass

conservation requires that Δ[N] = − Δ[D]. Inserting these relationships into Eq.

(5-42) gives

−d[ΔN]
dt

= kf([N]e + Δ[N]) − kr([D]e − Δ[N])

= kf[N]e − kr[D]e + (kf + kr)Δ[N]

= (kf + kr)Δ[N] = Δ[N]∕𝜏

In deriving the aforementioned relationship, use has been made of the relationship

kf[N]e = kr[D]e and 1/𝜏 = kf + kr; 𝜏 is called the relaxation time. This first-order

differential equation can be integrated as before to give

Δ[N] = Δ[N]0e−t∕𝜏 (5-43)

where Δ[N]0 is the deviation of N from its equilibrium value at t =0.

Special note should be made of two points. First, the relaxation time can readily be

obtained from experimental data simply by plotting ln(Δ[N]) versus t, and second, the
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first-order rate constant characterizing this reaction, that is, the reciprocal relaxation

time, is the sum of the two rate constants. If the equilibrium constant is known, both

rate constants can be obtained from a single experiment.

How might such an experiment be carried out? In the case of protein denaturation,

a small amount of denaturant such as urea might be added quickly to the solution.

The ratio of the native and denatured proteins would then move to a new equilib-

rium value characteristic of the higher urea concentration. Alternatively, if thermal

denaturation is being studied, the temperature might rapidly be raised, establishing

a new equilibrium ratio. The rate of conversion of the native state to the denatured

state can be measured after the experimental conditions are changed. For a reversible

first-order reaction such as Eq. (5-41), the time course of the entire reaction follows a

single exponential, and the effective rate constant is the sum of the two rate constants.

A wide range of methods exist for changing the equilibrium conditions: concentra-

tion jumps and temperature jumps are particularly useful, but pressure jumps and

electrical field jumps have also been used.

Studying rates near equilibrium is especially advantageous for higher order reac-

tions and complex mechanisms. As a final example, we will consider the elementary

step of an enzyme, E, combining with a substrate, S.

E + S ⇌ ES (5-44)

The rate equation characterizing this system is

−d[E]
dt

= kf[E][S] − kr[ES] (5-45)

We will write the concentrations as the sum of the equilibrium concentration plus the

deviation from equilibrium.

[E] = [E]e + Δ[E]

[S] = [S]e + Δ[S]

[ES] = [ES]e + Δ[ES]

Furthermore, mass conservation requires that Δ[E] = Δ[S] = −Δ[ES]. Inserting

these relationships into Eq. (5-45) gives

−d(Δ[E])
dt

= {kf([E]e + [S]e) + kr}Δ[E] + kf[E]e[S]e − kr[ES]e + kf(Δ[E])2

Near equilibrium, the deviation of concentrations from their equilibrium values is so

small that the term (Δ[E])2 can be neglected—this simplification in the rate equation

results from being near equilibrium. For example, if the deviation is 10% (0.1), the

square of the deviation is 1% (0.01). Furthermore, kf[E]e[S]e = kr[ES]e, so that the

final rate equation is

−dΔ[E]
dt

= Δ[E]
𝜏

(5-46)
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1/τ

Slope = kf

kr

[E]e + [S]e

FIGURE 5-6. Schematic representation of a plot of the reciprocal relaxation time, 1/𝜏, versus

the sum of the equilibrium concentrations, [E]e + [S]e, according to Eq. (5-47). As indicated,

both of the rate constants can be obtained from the data.

with
1

𝜏

= kf([E]e + [S]e) + kr (5-47)

Although the reaction of enzyme with substrate is a second-order reaction, the rate

equation near equilibrium, Eq. (5-46), is the same as for a first-order reaction. In fact,

all rate equations become first order near equilibrium! This is because only terms

containing Δc are retained in the rate law: (Δc)2 and higher powers are neglected. As

before, Eq. (5-46) can easily be integrated, and the relaxation time can be obtained

from the experimental data. If the relaxation time is determined at various equilibrium

concentrations, a plot of 1/𝜏 versus ([E]e + [S]e) can be made, as shown schematically

in Figure 5-6. The intercept is equal to kr and the slope is equal to kf. The study of

reactions near equilibrium has been especially important for biological systems, as it

has permitted the study of important elementary steps such as hydrogen bonding and

proteolytic reactions, as well as more complex processes such as enzyme catalysis

and ligand binding to macromolecules.

5.9 SINGLE MOLECULE KINETICS

Thus far we have considered the rates of reactions for systems containing a large num-

ber of molecules, i.e., approximately Avogadro’s number. However, modern advances

in light microscopy utilizing fluorescence detection now permit the kinetics of reac-

tion of individual molecules to be studied (cf. 5). By the use of lasers, the reaction

volume viewed can be reduced to microliters so that single molecules can be detected

by observing their optical properties such as fluorescence. For conventional systems,

the measured rate constant is an average of the rates of reaction of the individual

molecules. If the rates of reaction of individual molecules are measured, they will

vary over a wide range. For a simple first order reaction, say A going to B, the link
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FIGURE 5-7. Histogram of the fraction of kinetic events with a lifetime 𝜏 versus 𝜏. These

are hypothetical data from a single molecule experiment. The line through the data has been

calculated with Eq. (5-48) and k =0.2 s−1.

between the system or ensemble rate constant and the individual reaction lifetimes is

given by the relationship
N(𝜏)
NTotal

= k exp(−k𝜏) (5-48)

Here N(𝜏) is the number of kinetic events with lifetime 𝜏, NTotal is the total num-

ber of events (lifetimes) observed, and k is the ensemble rate constant. The experi-

ments consist of measuring hundreds, sometimes thousands, of lifetimes of individual

molecules, and then sorting them into ranges, e.g., the number of lifetimes in the

range 0 to 1 s, 1-2 s, etc. The data are then plotted as a bar graph, and the midpoints

of the bars are analyzed with Eq. (5-48). A plot of this type is shown in Figure 5-7.

Thus the reaction times of individual molecules can be related to conventional rate

constants.

What is the advantage of single molecule measurements over conventional kinetic

studies? In some cases, reactions can be observed that are masked by the averaging

process. For example, consider a molecule moving between or reacting with different

sites on a molecule such as DNA. In ensemble experiments, many different reactions

would be occurring at the same time, and sorting them all out would be difficult, if

not impossible, because all of the different reactions are initiated at a different time.

However, with single molecule experiments, the reactant molecule could be added to

a single molecule of DNA to initiate the reaction and/or sequence of reactions, and

the events on a single molecule can be observed as the reaction evolves. As a second

example, consider an overall reaction at equilibrium with several different reactions

involved in the equilibration. Single molecule measurements have the potential of

distinguishing among these reactions. The time resolution of single molecule exper-

iments is extremely broad, ranging from nanoseconds to many seconds.
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The measurement of reaction rates with single molecule methods is a rapidly

developing field of research and shows great promise for revealing details of reaction

mechanisms that cannot be probed with conventional kinetics.
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PROBLEMS

5-1. The activity of the antibiotic penicillin decomposes slowly when stored in a

buffer at pH 7.0, 298 K. The time dependence of the penicillin antibiotic activity

is given in the following table.

Time (weeks) Penicillin activity (arbitrary units)

0 10,100

1.00 8180

2.00 6900

3.00 5380

5.00 3870

8.00 2000

10.00 1330

12.00 898

15.00 403

20.00 167

What is the rate law for this reaction, that is, what is the order of the reaction

with respect to the penicillin concentration? Calculate the rate constant from the

data if possible. (Data adapted from Ref. 1.)

5-2. The kinetics of the reaction 2Fe3+ + Sn2+ → 2Fe2+ + Sn4+ has been studied

extensively in acidic aqueous solutions. When Fe2+ is added initially at rela-

tively high concentrations, the rate law is

R = k[Fe3+]2[Sn2+]
[Fe2+]
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Postulate a mechanism that is consistent with this rate law. Show that it is con-

sistent by deriving the rate law from the proposed mechanism.

5-3. The conversion of l-malate to fumarate is catalyzed by the enzyme fumarase:

H

HO C

C

H

H

C

C

H

H

H2O+

COO−

COO− COO−

COO−

The nonenzymatic conversion is very slow in neutral and alkaline media and has

the rate law

R = k[L − malate]
[H+]

Postulate two mechanisms for the nonenzymatic conversion and show that they

are consistent with the rate law.

5-4. The radioactive decay rates of naturally occurring radioactive elements can be

used to determine the age of very old materials. For example, 14
6
C is radioactive

and emits a low-energy electron with a half-life of about 5730 years. Through

a balance of natural processes, the ratio of 14C/12C is constant in living organ-

isms. However, in dead organisms or material, this ratio decreases as the 14C

decays. Since the radioactive decay is known to be a first-order reaction, the age

of the material can be estimated by measuring the decrease in the 14C/12C ratio.

Suppose a piece of ancient wool is found in which the ratio has been found to

decrease by 20%. What is the age of the wool?

5-5. The nonenzymatic hydration of CO2 can be written as

CO2 + H2O ⇌ H2CO3

The reaction is found to be first order in both directions. Because the water con-

centration is constant, it does not appear in the expression for the equilibrium or

rate equation. The first-order rate constant in the forward direction has a value

of 0.0375 s−1 at 298 K and 0.0021 s−1 at 273 K. The thermodynamic parame-

ters for the equilibrium constant at 298 K are ΔHo = 1.13 kcal/mol and ΔSo =
−8.00 cal/(mol K).

a. Calculate the Arrhenius activation energy for the rate constant of the forward

reaction. Also calculate the enthalpy and entropy of activation according to

transition state theory at 298 K.

b. Calculate the rate constant for the reverse reaction at 273 and 298 K. Assume

that ΔHo is independent of the temperature over this temperature range.

c. Calculate the Arrhenius activation energy for the rate constant of the reverse

reaction. Again, also calculate the enthalpy and entropy of activation at

298 K.
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5-6. A hydrogen bonded dimer is formed between 2-pyridone according to the reac-

tion

N

O H

OH
N

O

H

H

O

+
N N

kf

kr

The relaxation time for this reaction, which occurs in nanoseconds, has been

determined in chloroform at 298 K at various concentrations of 2-pyridone. The

data obtained are [G. G. Hammes and A. C. Park, J. Am. Chem. Soc. 91, 956

(1969)]

2-Pyridone (M) 109
𝜏 (s)

0.500 2.3

0.352 2.7

0.251 3.3

0.151 4.0

0.101 5.3

From these data, calculate the equilibrium and rate constants characterizing this

reaction. Hint: If the expression for the relaxation time is squared, the concentra-

tion dependence can be expressed as a simple function of the total concentration

of 2-pyridone.



CHAPTER 6

Applications of Kinetics to Biological
Systems

6.1 INTRODUCTION

We will now consider some applications of kinetic studies to biological systems.

This discussion will center on enzymes, as kinetic analyses of enzymes represent a

major research field and have provided considerable insight into how enzymes work.

Enzymes are proteins that are incredibly efficient catalysts: they typically increase

the rate of a chemical reaction by six orders of magnitude or more. Understand-

ing how this catalytic efficiency is achieved and the exquisite specificity of enzymes

has intrigued biologists for many decades and still provides a challenge for modern

research. Since enzyme deficiencies are the source of many diseases, enzymes are also

a target for medical research and modern therapeutics. The field of enzyme kinetics

and mechanisms is so vast that we will present only an abbreviated discussion. More

complete discussions are available (cf. Refs. 1–3).

We will also discuss catalysis by RNA (ribozymes), which is important in the

processing of RNA in biological systems, as well as some kinetic studies of DNA

denaturation and renaturation.

6.2 ENZYME CATALYSIS: THE MICHAELIS–MENTEN MECHANISM

We now consider the analysis of a simple enzymatic reaction. This discussion will

introduce some new concepts that are particularly useful for analyzing complex sys-

tems. The conversion of a single substrate to product will be taken as a prototype

reaction:

S → P (6-1)

A typical example is the hydration of fumarate to give l-malate (and the reverse

dehydration reaction) catalyzed by the enzyme fumarase. If a very low concentration

of enzyme is used relative to the concentration of substrate, a plot of the initial rate of
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Vm

V

KM

[S]

Vm/2

FIGURE 6-1. A plot of the initial velocity, v, versus the substrate concentration, [S], for an

enzymatic reaction that can be described by the Michaelis–Menten mechanism.

the reaction, or initial velocity, v, is hyperbolic, as shown in Figure 6-1. The limiting

initial velocity at high concentrations of substrate is called the maximum velocity,
Vm, and the concentration of substrate at which the initial velocity is equal to Vm/2 is

called the Michaelis constant, KM.

A mechanism that quantitatively accounts for the dependence of the initial velocity

on substrate concentration was postulated by Michaelis and Menten. It can be written

in terms of elementary steps as

E + S
k1−−−−⇀↽−−−−
k2

ES
k3−−→E + P (6-2)

where E is the enzyme and ES is a complex consisting of the enzyme and substrate.

The total concentration of enzyme, [E0], is assumed to be much less than the total

concentration of substrate, [S0]. This mechanism is an example of catalysis in that

the enzyme is not consumed in the overall reaction, which is greatly accelerated by

the enzyme. If we tried to do an exact mathematical analysis of the mechanism in

Eq. (6-2), coupled differential equations would need to be solved. Fortunately, this is

not necessary. We will consider two approximations that can adequately account for

the data.

The first is the equilibrium approximation. With this approximation, the first step

is assumed to be always at equilibrium during the course of the reaction. This means

that the equilibration of the first step is much more rapid than the breakdown of ES

to P, or k3 ≪ k2. We then have

d[P]
dt

= v = k3[ES] (6-3)

and
k1

k2

= [ES]
[E][S]

(6-4)
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Furthermore, conservation of mass requires that

[E0] = [E] + [ES]

= [ES]
(

1 + [E]
[ES]

)
= [ES]

{
1 +

k2

k1 [S]

}
(6-5)

or

[ES] =
[E0]{

1 + k2

k1[S]

} (6-6)

Substitution of Eq. (6-6) into (6-3) gives

d[P]
dt

= v =
k3[E0]

1 + k2

k1[S]

(6-7)

which can be rewritten as

v =
Vm

1 + KM∕[S]
(6-8)

with

Vm = k3[E0] (6-9)

and

KM =
k2

k1

(6-10)

Equation (6-8) is found to account quantitatively for the data. The maximum velocity

is proportional to the total enzyme concentration, and when KM = [S], v = Vm/2, as

required.

In some cases, it is possible to obtain independent estimates or measurements of

the equilibrium constant for the first step. Sometimes this independent measurement

is in good agreement with the constant obtained from kinetic studies, sometimes it is

not. Obviously, when the Michaelis constant and the equilibrium constant are not in

agreement, the mechanism must be reexamined.

A more general analysis of the Michaelis–Menten mechanism makes use of the

steady-state approximation. This approximation does not make any assumptions

about the relative values of the rate constants but assumes that the concentrations of

E and ES are very small relative to S, consistent with the experimental conditions.

Under these conditions, it is assumed that the rate of change of the concentrations of

E and ES is very small relative to the rate of change of the concentration of S, or

d[E]
dt

= d[ES]
dt

≈ 0

This is the steady-state approximation, an approximation that is very important for

analyzing complex mechanisms. A careful mathematical analysis shows that this is a
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very good approximation under the experimental conditions used, namely, when the

total substrate concentration is much greater than the total enzyme concentration.

What does the steady-state approximation mean? If we go back to the mechanism

(Eq. (6-2)), we find that

−d[ES]
dt

= (k2 + k3)[ES] − k1[E][S] ≈ 0

or
k1

(k2 + k3)
= [ES]

[E][S]
(6-11)

Note the similarity of this equation to the equilibrium constant (Eq. (6-4)). This means

that the ratio of concentrations remains constant. However, the ratio is not the equilib-

rium concentrations; it is the steady-state concentrations. If k3 ≪ k2, the steady state

is the same as the equilibrium state, so that the equilibrium condition is a special case

of the steady state. For all other steady-state situations, the ratio of concentrations is

always less than the equilibrium ratio.

We can now calculate the rate law for the steady-state approximation exactly as

for the equilibrium approximation.

[E0] = [ES]
(

1 + [E]
[ES]

)
= [ES]

{
1 +

(
k2 + k3

)
k1[S]

}
(6-12)

v = d[P]
dt

= k3[ES] =
k3[E0]

1 + (k2+k3)
k1[S]

v =
Vm

1 + KM∕[S]
(6-13)

with

Vm = k3[E0] (6-14)

and

KM =
(k2 + k3)

k1

(6-15)

Thus, it is clear that the equilibrium approximation and steady-state approximation

give rate laws that are indistinguishable experimentally. Most generally, the Michaelis

constant is a steady-state constant, but in a limiting case it can be an equilibrium

constant. As previously stated, both situations have been observed. The steady-state

approximation is more general than the equilibrium approximation and is typically

employed in the analysis of enzyme mechanisms.

With modern computers, data analysis is very easy, and experimental data can be

fit directly to Eq. (6-8) (or Eq. (6-13)) by a nonlinear least squares fitting procedure.

However, it is always a good idea to be sure that the data indeed do conform to the
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equation of choice by a preliminary analysis. Equation (6-8) can be linearized by

taking its reciprocal:
1

v
= 1

Vm

+
KM

Vm[S]
(6-16)

This is called the Lineweaver-Burk equation. A plot of 1/v versus 1/[S] is linear, and

the slope and intercept can be used to calculate the maximum velocity and Michaelis

constant. This equation can be used for the final data analysis providing proper sta-

tistical weighting is used. An alternative linearization of Eq. (6-8) is to multiply Eq.

(6-16) by [S] to give
[S]
v

= [S]
Vm

+
KM

Vm

(6-17)

This equation predicts that a plot of [S]/v versus [S] should be linear and gives a better

weighting of the data than the double reciprocal plot (Eq. (6-16)). Obviously, the final

results should be independent of how the data are plotted and analyzed! Examples of

both plots are given in Figure 6-2.

1/Vm

1/v

1/[S]
(a)

Slope = KM/Vm 

KM/Vm

[S]/v

[S]
(b)

Slope = 1/Vm 

−KM

−1KM

FIGURE 6-2. Linear plots commonly used for analyzing data that follow Michaelis–Menten

kinetics. (a) Plot of the reciprocal initial velocity, v, versus the reciprocal substrate concentra-

tion, 1/[S]. (b) Plot of [S]/v versus [S].
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The steady-state analysis can be extended to much more complex enzyme

mechanisms, as well as to other biological processes, but this is beyond the scope

of this presentation. How can enzyme catalysis be understood in terms of transition

state theory? The simple explanation is that enzyme catalysis lowers the standard

Gibbs energy of activation. This can be either an entropic or enthalpic effect. Much

more detailed interpretations of enzyme catalysis in terms of transition state theory

have been developed. The basic idea is that formation of the enzyme–substrate

complex alters the Gibbs energy profile of the reaction such that the Gibbs energy of

activation for the reaction is greatly lowered. Essentially, the Gibbs energy change

associated with binding of the substrate to the enzyme is used to promote catalysis.

6.3 𝛼-CHYMOTRYPSIN

As an example of how mechanisms can be developed for the action of enzymes, early

studies of the enzyme 𝛼-chymotrypsin will be discussed. Proteolytic enzymes were

among the first to be studied, not because of their intrinsic interest, but because they

could easily be isolated in a reasonably pure form. In fact, for many years the avail-

ability of large quantities of pure enzyme severely restricted the range of enzymes

that could be studied in mechanistic detail. With the ease of cloning and modern

expression systems, this is no longer a limitation.

The enzyme 𝛼-chymotrypsin has a molecular weight of about 25,000 and consists

of three polypeptide chains covalently linked by disulfides. It is an endopeptidase; that

is, it cleaves peptide bonds in the middle of a protein. Enzymes that cleave peptide

bonds at the end of a protein are called exopeptidases. The overall reaction can be

written as

H H
H2O

+H3N

O H O

C

NH NH

(6-18)R N R C CC O−

Experimentally, it is found that the enzyme has a strong preference for R being an

aromatic group, amino acids phenylalanine, tyrosine, and tryptophan, but hydropho-

bic amino acids such as isoleucine, leucine, and valine are also good substrates.

Studying this reaction with a protein as substrate is very difficult because the molec-

ular structure of the substrate is changing continuously as peptide bonds are cleaved.

This makes quantitative interpretation of the kinetics virtually impossible. Conse-

quently, the first step in elucidating the molecular details of the enzyme was to develop

“model” substrates, molecules that have the important features of the protein substrate

but are much simpler. Chymotrypsin is also a good esterase; that is, it hydrolyzes

esters. This proved very useful in elucidating the mechanism of action of the enzyme.

The most successful model substrates have the general structure
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H O

Amide Ester

O

C

C

R C NH2

CH3 CH3

NH NH

H O

C

C O

R C O R′

where R is the aromatic residue associated with phenylalanine, tyrosine, and trypto-

phan. Note that the amino group of the aromatic amino acid is acetylated. The enzyme

will not work on a free amine, as might be expected for an endopeptidase. Further-

more, only l-amino acids are substrates.

We will consider some of the results obtained with tryptophan as the amino acid.

R =

NH

The hydrolysis of tryptophan model substrates follows Michaelis–Menten kinet-

ics, and some of the results obtained for various esters and the amide are shown in

Table 6-1. In this table, kcat = Vm/[E0], and R′ is the group covalently linked to the

tryptophan carboxyl. The fact that kcat is essentially the same for all esters suggests

that a common intermediate is formed and that the breakdown of the intermediate is

the rate determining step in the mechanism. A different mechanism must occur for

the amide or there is a different slow step in the mechanism.

An inherent deficiency of steady-state kinetic studies of enzymes is that the

enzyme concentration is very low. Consequently, the intermediates in the reaction

sequence cannot be detected directly. Limited information about the intermediates

can be obtained through steady-state kinetic studies by methods not discussed here,

for example, the pH dependence of the kinetic parameters and the use of isotopically

labeled substrates that alter the kinetic parameters. However, in order to study the

intermediates directly, it is necessary to use sufficiently high enzyme concentrations

so that the intermediates can be observed directly. This is the realm of transient
kinetics. The difficulty for enzymatic reactions is that the reactions become very

TABLE 6-1. Steady-State Constants for Chymotrypsin.

R′ kcat(s
−1) KM (mM)

Ethyl 27 ∼5

Methyl 28 ∼5

p-Nitrophenyl 31 ∼5

Amide 0.03 ∼0.09

Source: Adapted from R. J. Foster and C. Niemann, J. Am. Chem. Soc. 77, 1886 (1955) and L. W. Cun-

ningham and C. S. Brown, J. Biol. Chem. 221, 287 (1956).
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fast, typically occurring in the millisecond and microsecond range. This requires

special experimental techniques. Transient kinetic studies have proved invaluable in

elucidating how enzymes work.

In the case of chymotrypsin, a substrate was sought for which a color change

occurred upon reaction in order that the changes in concentration could easily and

rapidly be observed. The first such substrate studied was p-nitrophenyl acetate, which

is hydrolyzed by chymotrypsin:

O C
C

O

NO2 CH3

H2O O+NO2 CH3 o−O−

(6-19)
+ 2 H+

The advantage of this substrate is that the phenolate ion product is yellow so

that the time course of the reaction can easily be followed spectrophotometrically.

With this substrate, it was possible to look at the establishment of the steady state,

as well as the steady-state reaction. A very important finding was that the reaction

becomes extremely slow at low pH. An intermediate, in fact, can be isolated by using

a radioactive acetyl group in the substrate. The intermediate is an acylated enzyme.

Later studies showed that the acetyl group is attached to a serine residue on chy-

motrypsin (4).

CH3C

O

OEnzyme

On the basis of the kinetic studies and isolation of the acyl enzyme, a possible

mechanism is the binding of substrate, acylation of enzyme, and deacylation of the

enzyme. The elementary steps can be written as

E + S
k1−−−−⇀↽−−−−

k−1

ES
k2−−→E-acyl

k3−−→E + Acetate

+ p − Nitrophenolate (6-20)

Does this mechanism give the correct steady-state rate law? The rate law can be

derived as for the simple Michaelis–Menten mechanism using the steady-state

approximation for all of the enzyme species and the mass conservation relationship

for enzyme:

[E0] = [E] + [ES] + [E-acyl] (6-21)

−d[ES]
dt

= (k−1 + k2)[ES] − k1[E][S] ≈ 0

−
d[E-acyl]

dt
= k3[E-acyl] − k2[ES] ≈ 0

v = k3[E-acyl] (6-22)
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When these relationships are combined, it is found that the Michaelis–Menten rate

law, Eq. (6-8), is obtained, with

Vm =
k2k3[E0]
k2 + k3

(6-23)

KM =
(

k−1 + k2

k1

)(
k3

k2 + k3

)
(6-24)

For ester substrates, the slow step is deacylation of the enzyme, or k3 ≪ k2. In this

case, kcat = k3 and KM = [(k−1 + k2)/k1](k3/k2).

How did the transient kinetic studies contribute to the postulation of this mech-

anism? It is worth spending some time to analyze the mechanism in Eq. (6-20) in

terms of transient kinetics. This analysis can serve as a prototype for understanding

how transient kinetics can be used to probe enzyme mechanisms, not only for chy-

motrypsin but also for other enzyme reactions. The proposed mechanism predicts that

the acyl enzyme should accumulate and be directly observable. If we consider only a

single turnover of the enzyme at very early times and high substrate concentrations,

all of the enzyme should be converted to the acyl enzyme, followed by a very slow

conversion of the acyl enzyme to the free enzyme through hydrolysis (k3 ≪ k2). The

slow conversion to enzyme will follow Michaelis–Menten kinetics (Eq. (6-13)) ini-

tially as long as the total substrate concentration is much greater than the total enzyme

concentration. Thus, the complete solution to the rate equations for the mechanism

in Eq. (6-20) should contain two terms: (i) the rate of conversion of the enzyme to

the acyl enzyme and (ii) the rate of the overall reaction that is limited by the rate of

hydrolysis of the acyl enzyme.

To simplify the analysis, let us assume the following: k3 is approximately zero

at early times (k2 ≫ k3); the formation of the initial enzyme–substrate complex, ES,

is very rapid relative to the rates of the acylation and deacylation steps so that ES

is in a steady state (d[ES]/dt = 0); and the total substrate concentration is much

greater than the total enzyme concentration. The last assumption is similar to that

for the steady-state approximation used earlier for the Michaelis–Menten mecha-

nism. However, in this case, the enzyme concentration is sufficiently high so that

the concentration of the intermediate can be detected. The rate of formation of the

intermediate is given by
d[E-acyl]

dt
= k2[ES] (6-25)

Because the phenolate ion is formed when the acyl enzyme is formed, the rate of

formation of phenolate ion is the same as the rate of formation of the acyl enzyme.

This is actually a measurement of the rate of establishment of the steady state. In

order to integrate this equation, we make use of the identity

[E] + [ES] = [ES]
(

1 + [E]
[ES]

)
= [ES]

{
1 +

(
k−1 + k2

)
k1[S]

}
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and mass conservation

[E0] = [E] + [ES] + [E-acyl]

or

[E] + [ES] = [E0] − [E-acyl]

Insertion of these relationships into Eq. (6-25) gives

d[E-acyl]
dt

=
k2([E0] − [E-acyl])

1 + (k−1+k2)
k1[S]

(6-26)

Integration of this equation gives

[E-acyl] = [E0](1 − e−k′
2
t) (6-27)

with k′
2
= k2∕{1 + (k−1 + k2)∕(k1[S])}.

Note that when t = 0, [E-acyl] = 0, and when t =∞, [E-acyl] = [E0], as expected.

The time dependence of phenolate, P1, formation at early times is

[P1] = vt + [E0](1 − e−k′
2
t) (6-28)

The time course of the reaction as described by Eq. (6-28) is shown schematically in

Figure 6-3. The second term in the equation dominates at early times, and the expo-

nential rise can be analyzed to give k′
2
. The linear portion of the curve corresponds

to the Michaelis–Menten initial velocity and can be used to obtain Vm and KM. The

maximum velocity for this limiting case is k3[E0], so that both k2 and k3 can be deter-

mined. A more exact analysis that does not assume k3 = 0 is a bit more complex,

but the end result is similar. The rate equation contains the same two terms as in Eq.

(6-28). However, the second term is now more complex: the exponent is (k′
2
+ k3)t

instead of k′
2
t; and the amplitude is [E0][k′2∕(k

′
2
+ k3)]2 rather than [E]0. The first term

is the same, vt, with the maximum velocity and Michaelis constant defined by Eqs.

(6-23) and (6-24).

Finally, we consider the situation when the rate of hydrolysis of the acyl enzyme

is very fast relative to its formation (k3 ≫ k2). We have seen previously that fast steps

occurring after the rate-determining step do not enter into the rate law. Therefore,

the mechanism is equivalent to the Michaelis–Menten mechanism with only a single

intermediate (Eq. (6-2)), with the rate-determining step being the acylation of the

enzyme (Vm = k2[E0]). If the transient kinetics are analyzed, the rate is still given by

Eq. (6-28), but the amplitude of the second term is essentially zero, rather than [E0].

Thus, the transient kinetics and steady-state kinetics provide the same information.

The presence of an initial “burst” of product, as shown in Figure 6-3, is commonly

used as a diagnostic for the presence of an intermediate. If the burst is not present,

that is, the straight line portion of the curve extrapolates through zero, this means

either that an intermediate is not formed, or that its rate of disappearance is much
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[P1]

[Eo]

Slope = v

t

FIGURE 6-3. Schematic representation for the kinetics of an enzymatic reaction displaying

“burst” kinetics. The product of the reaction, P1, is plotted versus the time. As described by

Eq. (6-28) for the limiting case of k2 ≫ k3,the slope of the linear portion of the curve is the

steady-state initial velocity, v, and the initial exponential time dependence is characterized by

the rate constant k′
2

and a “burst” amplitude of [E0].

faster than its rate of appearance. This exhaustive, perhaps exhausting, discussion of

the mechanism in Eq. (6-20) is a good example of what must be done in order to

arrive at a mechanism for an enzyme reaction by kinetic studies. Both steady-state

kinetics and transient kinetics are necessary for a complete picture.

The proposed mechanism accounts for all of the facts presented: the observed rate

law, the same kcat for all ester substrates, and a common intermediate. What about

amides? For amides, it turns out that the slow step is acylation of the enzyme, that

is, k2 ≪ k3, so that kcat = k2 and KM = (k−1 + k2)/k1. As discussed earlier, if the

acylation of the enzyme is slow relative to deacylation, k3 ≫ k2, the intermediate

does not accumulate and therefore cannot be observed directly. Literally, hundreds

of experiments are consistent with this mechanism—a very remarkable achievement.

Additional experiments that permitted the very fast reactions prior to the acylation

of the enzyme to be studied show that this mechanism is too simple. At least one

additional elementary step is required. The sequential elementary steps are (i) binding

of substrate to the enzyme, (ii) a conformational change of the enzyme–substrate

complex, (iv) acylation of the enzyme, and (v) deacylation of the enzyme.

The ultimate goal of kinetic studies is to understand the mechanism in terms of

molecular structure. In the case of chymotrypsin, the three-dimensional structure of

the enzyme is known and is shown in Figure 6-4a. A well-defined binding pocket is

observed for the aromatic side chain of the specific substrates of the enzyme. The

pocket is lined with nonpolar side chains of amino acids and is very hydrophobic.

Up to three amino acids coupled to the N-terminus of the aromatic amino acid inter-

act with a short range of antiparallel 𝛽-sheet in the enzyme. A hydrophobic site is

also observed for the amino acid attached to the C-terminus of the substrate. This

explains why a free carboxyl group cannot bind and therefore why chymotrypsin

is an endopeptidase. As shown in Figure 6-4b, a triad of amino acids, serine-195,

histidine-57, and aspartate-102, is observed in the active site region and is found in

other serine proteases. The imidazole acts as a general base during the nucleophilic

attack of the serine hydroxyl on the substrate. A tetrahedral intermediate probably
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(a)

(b)

Asp 102

Ser 195

His 57

FIGURE 6-4. (a) Space filling representation of chymotrypsin, showing the active site pocket

where substrate binding occurs. The blue at the active site is imidazole, the green is serine, and

the red is aspartate. (b) Arrangement of the protein residues at the active site of chymotrypsin.

The serine is the residue acylated; the imidazole of the histidine serves as a general base cat-

alyst; and the aspartate carboxyl group is hydrogen bonded to the imidazole. Copyright by

Professor Jane Richardson. Reprinted with permission.
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FIGURE 6-5. A mechanism for the hydrolysis of peptides or amides by chymotrypsin. The

imidazole acts as a general base to assist the nucleophilic attack of serine on the substrate or

the nucleophilic attack of water on the acyl enzyme.

is formed prior to acyl enzyme formation. Water serves as the nucleophile for the

hydrolysis of the acyl enzyme, with imidazole again participating as the general base.

An abbreviated version of the catalytic mechanism is shown in Figure 6-5.

This greatly truncated story of the elucidation of the mechanism of action of chy-

motrypsin illustrates several important concepts: the steady-state approximation, the

use of steady-state kinetics in determining chemical mechanisms, the importance of

transient kinetics in elucidating intermediates in a mechanism, and the interpreta-

tion of the mechanism in terms of molecular structure. More complete discussions of

chymotrypsin are available (1,2,5).

6.4 PROTEIN TYROSINE PHOSPHATASE

In our earlier discussion of metabolism, we saw that the energy obtained in glycol-

ysis is stored as a phosphate ester in ATP and serves as a source of free energy for

biosynthesis. The importance of phosphate esters is not confined to this function.

Phosphorylation and dephosphorylation of proteins play a key role in signal transduc-

tion and the regulation of many cell functions. For example, the binding of hormones

to cell surfaces can trigger a cascade of such reactions that regulate metabolism within

the cell. The cell processes modulated by this mechanism include T-cell activation,

the cell cycle, DNA replication, transcription and translation, and programmed cell

death, among many others. Both the kinases, responsible for protein phosphorylation,

and the phosphatases, responsible for protein dephosphorylation, have been studied
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extensively. We shall restrict this discussion to the phosphatases, and primarily to one

particular type of phosphatase.

The phosphorylation of proteins primarily occurs at three sites, namely, the side

chains of threonine, serine, and tyrosine. Protein phosphatases can be divided into two

structural classes: the serine/threonine-specific phosphatases that require metal ions

and tyrosine phosphatases that do not require metals but use a nucleophilic cysteine

to cleave the phosphate. The latter class includes dual function phosphatases that can

hydrolyze phosphate esters on serine and threonine, as well as tyrosine. Many reviews

of these enzymes are available (cf. Refs. 6 and 7). We will discuss the mechanism of

a particular example of tyrosine-specific phosphatase, namely, an enzyme found in

both human and rat that has been extensively studied structurally and mechanistically

(6).

The overall three-dimensional structure of the catalytic domain of the enzyme is

shown in Figure 6-6a, and the active site region is shown in Figure 6-6b with vanadate

bound to the catalytic site. Vanadate is frequently used as a model for phosphate

esters because the oxygen bonding to vanadium is similar to the oxygen bonding to

phosphorus, and vanadate binds tightly to the enzyme. A cysteine rests at the base of

the active-site cleft. An aspartic acid and a threonine (or serine in similar enzymes)

are also near the active site and are postulated to play a role in catalysis, as discussed

in the subsequent sections.

The kinetic mechanism that has been postulated is the binding of the protein sub-

strate followed by transfer of the phosphoryl group from tyrosine to the cysteine at

the active site, and finally hydrolysis of the phosphorylated cysteine:

OH

H2O

R

ES E-PO3

k1

k2

k3
E + S E + HPO4

k−1

(6-29)

As with chymotrypsin, a protein is not a convenient substrate to use because of the

difficulty in phosphorylating a single specific tyrosine and the lack of a convenient

method for following the reaction progress. In this case, the model substrate used was

p-nitrophenyl phosphate. Similar to chymotrypsin, when the enzyme is phosphory-

lated the yellow phenolate ion is released so that the reaction progress can easily be

monitored. Extensive steady-state and transient kinetic studies have been carried out,

and we will only present a few selected results that summarize the findings (8,9).

The role of the cysteine was firmly established by site-specific mutagenesis, as

converting the cysteine to a serine results in an inactive enzyme. The cysteine is

postulated to function as a nucleophile with the formation of a cysteine phosphate.

However, when transient kinetic studies were carried out with the native enzyme,

a burst phase was not observed. This is shown in Figure 6-7a. As we noted previ-

ously, this indicates that either a phosphoenzyme intermediate is not formed or its

hydrolysis is much faster than its formation. The aspartic acid and serine or thre-

onine shown at the active site of the enzyme in Figure 6-6 are conserved in many
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(a)

(b)

GIn446

C

Asp356

Arg409

2.8

3.0

3.1

3.2
Cys403

Thr410

FIGURE 6-6. (a) Backbone representation of the catalytic domain of protein tyrosine phos-

phatase. Coils and arrows represent 𝛼-helices and 𝛽-strands, respectively. The cysteine (green),

arginine (red), and aspartate (gold) are also shown. Reproduced from J. M. Denu, J. A. Stuckey,

M. A. Saper, and J. E. Dixon, Cell 87, 316 (1996). Copyright © 1996 with permission from

Elsevier. (b) Vanadate bound at the active-site cysteine of protein tyrosine phosphatase. Other

amino acids at the catalytic site are indicated, including the threonine and aspartate that partici-

pate in the catalytic mechanism. Reproduced from J. M. Denu, D. L. Lohse, J. Vijayalakshmi,

M. A. Saper, and J. E. Dixon, Proc. Natl. Acad. Sci. USA 93, 2493 (1996). Reprinted with

permission of the Proceedings of the National Academy of Sciences USA. Reproduced by

permission of the publisher via Copyright Clearance Center, Inc.
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FIGURE 6-7. Transient kinetic time course for the hydrolysis of p-nitrophenyl phosphate by

native (a) and mutant (b) protein tyrosine phosphatase. The point mutation substituted alanine

for serine 222. The concentrations of substrate are shown next to the traces. Reprinted with

permission from D. L. Lohse, J. M. Denu, N. Santoro, and J. E. Dixon, Biochemistry 36, 4568

(1997). Copyright © 1997 American Chemical Society.

different enzymes of this class of tyrosine phosphatases. Consequently, it was decided

to mutate these residues. If the serine is mutated to alanine, the enzyme is still active,

but now a burst is observed, as shown in Figure 6-7b. This burst was postulated to

represent the formation of the phosphoenzyme, and the rate constants were obtained

for the phosphorylation of cysteine and its hydrolysis. The results of the transient

kinetic experiments are presented in Table 6-2. For the native enzyme, only kcat can

be determined and is equal to k2. For the serine to alanine mutant, the rate constant

for hydrolysis of the intermediate is the same as kcat, as expected. This mutation also

suggests that serine plays a role in the hydrolysis mechanism.

The importance of the aspartic acid in the mechanism was inferred not only from

its conservation in many different enzymes, but also by the pH dependence of the

steady-state kinetic parameters, which suggested it functioned as a general acid in the

phosphorylation of the enzyme. When the aspartic acid was mutated to asparagine,

the enzyme still functioned, but kcat was only about 1% of that of the native enzyme

(Table 6-2). The transient kinetics did not show a burst phase, indicating that forma-

tion of the phosphoenzyme was still rate determining. As expected, the pH depen-

dence of the steady-state kinetic parameters was altered by this mutation.
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TABLE 6-2. Kinetic Parameters for Native and Mutated Tyrosine Phosphatases

Enzyme kcat (s−1) k2 (s−1) k3 (s−1) K(μM)a

Native 20

Serine 222 → alanine 1.3 34 1.4 0.46

Aspartate 181 → asparagine 0.27

Serine 222 → alanine and 0.055 1.9 0.057 0.81

Aspartate 181 → asparagine

Source: Adapted from D. L. Lohse, J. M. Denu, N. Santoro, and J. E. Dixon, Biochemistry 36, 4568 (1997).
a(k−1 + k2)/k1.

Finally, the double mutated enzyme was prepared in which the serine was changed

to alanine and the aspartate to asparagine. The transient kinetics showed a burst so that

the slow step was now the hydrolysis of the intermediate, as with the single mutant

in which serine was changed to alanine. However, kcat was reduced even further, and

the rate constants for both phosphorylation of the enzyme and hydrolysis were greatly

reduced (Table 6-2). On the basis of these and other data, the aspartate was postulated

to serve as a general base in the hydrolysis of the intermediate. The intermediate is

sufficiently stable in the double mutant so that it could be observed directly with

phosphorus nuclear magnetic resonance (8). The mechanism proposed for this reac-

tion has two distinct transition states, one for phosphorylation of the cysteine and

another for hydrolysis of the phosphorylated enzyme. Based on the experiments dis-

cussed and other data, especially structural data, structures have been proposed for

the two transition states as shown in Figure 6-8.

The mechanism of tyrosine phosphatases illustrates several important points. First,

the general usefulness of the analysis developed for chymotrypsin is apparent. Both

transient and steady-state kinetic experiments were important in postulating a mech-

anism. Second, the importance of site-specific mutations in helping to establish the

mechanism is evident. However, this method is not without pitfalls. It is important

to establish that mutations do not alter activity through structural changes in the

molecule. In the present case, experiments were carried out to establish the struc-

tural integrity of the mutant enzymes. This ensures that the mutations are altering

only the chemical aspects of the mechanism. Finally, this discussion again illustrates

the many different types of experiments that must be performed in developing mech-

anisms. The kinetic results must be bolstered by structural and chemical information.

Many other studies of enzymes could profitably be discussed, but instead we will turn

our attention to kinetic studies in other types of biological systems.

6.5 RIBOZYMES

Enzymes are the most efficient and prevalent catalysts in physiological systems, but

they are not the only catalysts of biological importance. RNA molecules have also

been found to catalyze a wide range of reactions. Most of these reactions involve

the processing of RNA, cutting RNA to the appropriate size or splicing RNA. RNA
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FIGURE 6-8. Proposed transition states for the protein tyrosine phosphatase reaction. (a)

Formation of the cysteine phosphate intermediate with a tyrosine phosphate as substrate. (b)

Hydrolysis of the cysteine phosphate intermediate. Adapted from J. M. Denu, D. L. Lohse,

J. Vijayalakshmi, M. A. Saper, and J. E. Dixon, Proc. Natl. Acad. Set USA 93, 2493 (1996).

Republished with permission of the National Academy of Sciences USA.

has also been implicated in peptide bond formation on the ribosome and has been

shown to hydrolyze amino acid esters. These catalytic RNAs are called ribozymes.

They are much less efficient than a typical protein enzyme and sometimes catalyze

only a single event. In the latter case, this is not true catalysis. Ribozymes also may

work in close collaboration with a protein in the catalytic event. We will consider an

abbreviated discussion of a ribozyme, ribonuclease P. For more information, many

reviews of ribozymes are available (10–12).

Ribonuclease P catalyzes an essential step in tRNA maturation, namely, the cleav-

age of the 5′ end of a precursor tRNA (pre-tRNA) to give an RNA fragment and the

mature tRNA. This reaction is shown schematically in Figure 6-9. Also shown in

this figure is a representation of the catalytic RNA. The catalytic RNA is about 400

nucleotides long and catalyzes the maturation reaction by itself in vitro. In vivo, a

protein of about 120 amino acids also participates in the catalysis. The precise role

of the protein is not known, but it appears to alter the conformation of the RNA. The

protein–RNA enzyme has a broader selectivity for biological substrates and is a more

efficient catalyst (13). Metal ions are also involved in this reaction, with Mg2+ being

the most important physiologically. Metal ions probably play a role both in cataly-

sis and in maintaining the active conformation of the RNA, but we will not consider

this aspect of the reaction here. Transient kinetic studies of the ribozyme have been

carried out, and the minimal mechanism consists of the binding of pre-tRNA to the
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FIGURE 6-9. The reaction of pre-tRNA catalyzed by ribonuclease P is shown schematically

at the top of the figure. The 5′ leader sequence of the pre-tRNA is removed in the reaction.

The eubacterial consensus structure of ribonuclease P RNA is shown in the lower part of the

figure. Proven helices are designated by filled rectangles, invariant nucleotides by uppercase

letters, >90% conserved nucleotides by lowercase letters, and less conserved nucleotides by

dots. Reproduced from J. W. Brown and N. R. Pace, Nucleic Acids Res. 20, 1451 (1992).

Reproduced by permission of Oxford University Press.

ribozyme, cleavage of the phosphodiester bond, and independent dissociation of both

products. We will present some of the results obtained with the RNA component of

ribonuclease P.

If transient experiments are carried out with ribonuclease P with excess substrate,

a “burst” of the tRNA product occurs at short times, followed by an increase in the

product concentration that is linear with time. This behavior is familiar by now, as it

has been observed for chymotrypsin and protein tyrosine phosphatase, as discussed

earlier. In the case of ribonuclease P, a covalent intermediate is not formed with the

ribozyme; instead, the dissociation of products is very slow relative to the hydrolytic
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reaction. The mechanism can be written as

pre-tRNA + E ⇌ ES → tRNA + P + E (6-30)

where E is RNAase P RNA and P is the pre-tRNA fragment product. This is not

exactly the same as the mechanism discussed for chymotrypsin, but the analysis is

similar if the second step is assumed to be much slower than the first. (The detailed

analysis is given in Ref. 14.) There is an important lesson to be learned here. “Burst”

kinetics are observed whenever the product is formed in a rapid first step followed by

regeneration of the enzyme in a slower second step. The apparent rate constants for

these two steps can be determined.

What is desired, however, is to distinguish between the binding of enzyme and sub-

strate and the hydrolysis; both of these reactions are aggregated into the first step in

Eq. (6-30). In the case of chymotrypsin and protein tyrosine phosphatase, we assumed

that the binding step was rapid relative to the formation of the enzyme–substrate inter-

mediate. In this case, we cannot assume that binding is rapid relative to hydrolysis.

The two steps were resolved by single turnover experiments: an excess of enzyme was

used and because dissociation of products is slow, only a single turnover of substrate

was observed (14). The mechanism can be written as

E + pre-tRNA
k1−−→E ⋅ pre-tRNA

k2−−→E ⋅ tRNA ⋅ P (6-31)

The results obtained are shown in Figure 6-10 for two different concentrations of

enzyme. At the lower concentration of enzyme, it is clear that the curve is sigmoidal,

rather than hyperbolic. This is because the first step is sufficiently slow that it takes

some time for the concentration of the first enzyme–substrate complex to build up.

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

Fr
ac

tio
n 

cl
ea

ve
d

Time in seconds

FIGURE 6-10. Single turnover measurements of the hydrolysis of pre-tRNA catalyzed by the

RNA component of RNAase P. The fraction of pre-tRNA cleaved is plotted versus time. The

pre-tRNA was mixed with excess concentrations of RNAase P RNA, 1.4 μM (Δ), or 19 μM

(•). The data are the fit to a mechanism of two consecutive first-order reactions (Eq. (6-38)).

Reprinted with permission from J.A. Beebe and C.A. Fierke, Biochemistry 33, 10294 (1994).

Copyright 1994 American Chemical Society.
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The data at the higher enzyme concentration are essentially hyperbolic because the

rate of the first reaction is greater at higher enzyme concentration. These data can

be explained by analyzing the mechanism in Eq. (6-31) as two consecutive irre-

versible first-order reactions. Why irreversible? Fortunately, the rate of dissociation

of pre-tRNA from the ribozyme is sufficiently slow that it does not occur on the

time scale of the experiment, and furthermore, the analysis of the product gives both

E-tRNA and free tRNA so that if some dissociation of tRNA occurs it is not rele-

vant. Why is the first step assumed to be first order? This is another example of a

pseudo-first-order rate constant because the enzyme concentration is effectively con-

stant throughout the experiment. The pseudo-first-order rate constant is k1[E], where

k1 is the second-order rate constant for the reaction of the enzyme with the substrate.

To simplify the nomenclature, we will rewrite the mechanism as

A → B → C (6-32)

The rate equation for the time dependence of A is

−d[A]
dt

= k1[A] (6-33)

which is easily integrated to give

[A] = [A]0e−k1t (6-34)

where [A]0 is the starting concentration, in this case of pre-tRNA. The rate equation

for the time dependence of B is

−d[B]
dt

= k2[B] − k1[A]

−d[B]
dt

= k2[B] − k1[A]0e−k1t (6-35)

The solution to this differential equation is

[B] =
[A]0k1

k2 − k1

(e−k1t − e−k2t) (6-36)

This solution does not work if k1 = k2 as the denominator goes to zero. For this special

case,

[B] = k1[A]0te−k1t (6-37)

Finally, the time dependence of C can be obtained from mass balance since

[A]0 = [A] + [B] + [C]:

[C] = [A0]
(

1 −
k2

k2 − k1

e−k1t +
k1

k2 − k1

e−k2t

)
(6-38)
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If Eq. (6-38) is used to analyze the data in Figure 6-10, it is found that k1 = 6 ×
106 M−1 s−1 [RNA]0 and k2 = 6 s−1. Understanding how to analyze “burst” kinet-

ics and consecutive first-order reactions is sufficient for the kinetic analysis of many

enzymatic reactions, as the conditions can usually be adjusted to conform to these

relatively simple mechanisms.

The mechanistic work carried out with RNAseP has permitted the establishment

of a minimal mechanism for the RNA portion of the enzyme. However, much remains

to be done. The roles of metals, specific groups on the RNA, and the protein remain

to be delineated. Understanding how ribozymes function is at the forefront of modern

biochemistry and has important implications for both physiology and the evolution

of enzymes.

6.6 DNA MELTING AND RENATURATION

We will conclude this chapter with a discussion of the denaturation and renatura-

tion of DNA. Understanding the dynamics of such processes is clearly of biological

importance. At the outset, it must be stated that a detailed understanding of the kinet-

ics and mechanisms has not been achieved. However, this is not for lack of effort, and

a qualitative understanding of the mechanisms has been obtained.

We will begin with some of the elementary steps in the dynamics of the interactions

between the two chains of helical DNA. As discussed in Chapter 3, the thermodynam-

ics of hydrogen bonding between bases has been studied in nonaqueous solvents,

where the dimers formed are reasonably stable. Kinetic studies of hydrogen-bonded

dimers have also been carried out, and the reactions have been found to be extremely

fast, occurring on the submicrosecond and nanosecond time scales. For example, the

kinetics of formation of a hydrogen-bonded dimer between 1-cyclohexyluracil and

9-ethyladenine has been studied in chloroform (15). (The hydrocarbon arms have

been added to the bases to increase their solubility in chloroform.) The reaction is

found to occur in a single step with a second-order rate constant for the formation of

the dimer of 2.8 × 109 M−1 s−1 and a dissociation rate constant of 2.2 × 107 s−1 at

20∘C. The second-order rate constant is the maximum possible value; that is, it is the

value expected if every collision between the reactants produced a hydrogen-bonded

dimer. The upper limit for the rate constant of a bimolecular reaction can be calculated

from the known rates of diffusion of the reactants in the solvent. In all cases where

hydrogen-bonded dimer formation has been studied, the formation of the dimer has

been found to be diffusion controlled.

What does this tell us about the rate of hydrogen bond formation that occurs after

the two reactants have diffused together? To answer this question, we will postulate

a very simple mechanism, namely, diffusion together of the reactants to form a dimer

that is not hydrogen bonded, followed by the formation of hydrogen bonds. This can

be written as

A + B
k1−−−−⇀↽−−−−

k−1

[A,B]
k2−−−−⇀↽−−−−

k−2

[A − B] (6-39)
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In this mechanism, k1 is the rate constant for the diffusion-controlled formation of

the intermediate and k−1 is the rate constant for the diffusion-controlled dissociation

of the intermediate. Since only a single step is observed in the experiments, assume

that the initial complex formed is in a steady state:

[A,B] =
k1[A][B]
(k−1 + k2)

+
k−2[A − B]
(k−1 + k2)

(6-40)

The overall rate of the reaction is

d[A − B]
dt

= k2[A,B] − k−2[A − B] (6-41)

If Eq. (6-40) is substituted into Eq. (6-41), we obtain

d[A − B]
dt

= kf[A][B] − kr[A − B] (6-42)

with

kf =
k1k2

(k−1 + k2)

and

kr =
k−1k−2

(k−1 + k2)

The experimental results indicate that kf = k1. This is true if k2 ≫ k−1 or formation of

the hydrogen bonds is much faster than diffusion apart from the intermediate. How-

ever, we can calculate the value of k−1; it is about 1010 s−1. Therefore, the rate constant

for formation of the hydrogen bonds, k2, must be greater than about 1011 s−1. A more

exact analysis would put in a separate step for formation of each of the two hydrogen

bonds, but this would not change the conclusion with regard to the rate of hydrogen

bond formation. Hydrogen bond formation is very fast!

We know that hydrogen bonding alone cannot account for the stability of the DNA

double helix: Base stacking and hydrophobic interactions also are important. An

estimate of the rate of base stacking formation and dissociation has been obtained

in studies of poly A and polydA (16). These molecules undergo a transition from

“stacked” to “unstacked” when the temperature is raised. This transition is accompa-

nied by spectral changes and can easily be monitored. Conditions were adjusted so

that the molecules were in the middle of the transition, and the temperature was raised

very rapidly (<1 μs) with a laser. This is an example of a kinetic study near equilib-

rium. As the system returns to equilibrium at the higher temperature, the relaxation

time can be measured and is the sum of the rate constants for stacking and unstack-

ing (Eq. 5-43). The results obtained indicate that the rate constants are in the range

of 106–107 s−1. Although this is a very fast process, it is considerably slower than

hydrogen bonding or simple rotation of the bases.

Moving up the ladder of complexity, we now consider the formation of

hydrogen-bonded dimers between oligonucleotides (17,18). Only a few prototype
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FIGURE 6-11. A plot of 1∕𝜏 versus the sum of the equilibrium concentrations of A10 and U10

at 17∘C (Eq. (6-43)). The two reactants combine to form a double-helix structure. Adapted

from D. Pörschke and M. Eigen, Cooperative non-enzymic base recognition. III, J. Mol. Biol.
62, 361 (1971). Copyright 1971, with permission from Elsevier.

reactions will be considered, namely, the reaction of a series of An oligonucleotides

with Un oligonucleotides to form double-helical dimers. These reactions occur in

the millisecond to second time regime with n = 8–18. In all cases, only a single

relaxation time was observed. The relaxation time was consistent with a simple

bimolecular reaction (Eq. 5-47):

1

𝜏

= k1([An]e + [Un]e) + k−1 (6-43)

A typical plot of 1∕𝜏 versus the sum of the equilibrium concentration is given in

Figure 6-11, and some of the rate constants obtained are given in Table 6-3. The

bimolecular rate constants are all about 106 M−1 s−1, whereas the dissociation rate

constants vary widely, reflecting the stability of the double helix that is formed.

Although the second-order rate constant is quite large, it is considerably below the

value expected for a diffusion controlled reaction.

A detailed analysis of the mechanism can be made as above for the case of the

formation of a hydrogen-bonded dimer. This case is considerably more complex, as a

TABLE 6-3. Rate Constants for the Reaction of [An] with [Un] at 17∘C

n 106k1 (M−1 s−1) k−1 (s−1)

8 1.7 2400

9 7.1 640

10 0.83 175

11 0.58 28

14 1.44 1

Source: Adapted from D. Pörschke and M. Eigen, J. Mol. Biol. 62, 361 (1971).



6.6 DNA MELTING AND RENATURATION 145

separate step is needed for the pairing of each of the n bases. The analysis carried out

was bolstered by determination of the activation energies for the rate constants. The

conclusion reached is that nucleation of the double helix after the molecules have

diffused together is rate determining. The formation of the first base pair is rapid,

but dissociation is even more rapid. This is also true for the formation of two base

pairs. However, when the third base pair is formed, the structure is stabilized. After

a nucleus of three base pairs is present, each later base pair forms with a specific rate

constant of about 107 s−1. Note that this is consistent with the results obtained for

the “stacking” and “unstacking” of poly A. Altogether these results indicate that the

elementary steps in the dynamics of DNA base pairing and stacking (and whatever

other types of interactions are important for base pairing) are very rapid. We now turn

to consideration of DNA itself.

As might be expected, the melting and reformation of DNA is very complex. DNA

is very heterogeneous, and we have discussed in Chapter 3 that A–T-rich regions are

much less thermodynamically stable than G-C-rich regions. In addition, DNA has a

complex structure, with loops and bulges. Native DNA has a very precise alignment

of base pairs. If extensive melting occurs, base pairings other than the native pair-

ings may form when the temperature is lowered to form the native structure, thereby

slowing down reformation of the native structure. The ultimate form of melting is sep-

aration of the individual strands. Because the strands are very long, the rate of melting

could be limited by the hydrodynamics of moving the chains apart. Bearing these fac-

tors in mind, let us examine some experimental results. Fortunately, the melting and

reformation can easily be followed because the spectrum of DNA changes when the

bases are stacked. (This effect is discussed further in Chapter 10.) Furthermore, the

melting/reformation processes are easy to initiate by changing the temperature.

Some typical results for the denaturation of a viral DNA are shown in Figure 6-12.

The denaturation was initiated by the raising of the temperature to give a loss in the

native spectrum of 25%, 53%, and 95%. In the first case, the loss in absorbance is

approximately first order with a rate constant of about 1 min−1. The other two cases

do not strictly follow first-order kinetics; that is, the logarithmic plot in Figure 6-12

is not linear, and the rates are clearly much slower. The approximate first-order rate

constants at long times are shown in the figure. In contrast to the results in model

systems, the melting kinetics cannot be fit to a single relaxation time, and the time

scale is 100–1000 s. The viral DNA studied has about 2 × 105 base pairs. If only

the elementary steps discussed earlier were involved, the DNA would be completely

melted in less than 1 second. How can these results be explained? The rate of melting

is governed by the rate of unwinding of the double helix, and the rate of unwinding

varies as the melting proceeds. Melting will usually start in the interior of the DNA,

and unwinding can only occur if one end of the loop rotates with respect to the other.

Initially, this rotation is fast because the double helix is approximately a rod, but as

melting proceeds, the bulky loops produced make it harder for one end of the helix

to rotate with respect to the other. The rate then becomes slower, as observed. Thus,

strand unwinding and separation become rate limiting. In support of this mechanism,

if DNA is subjected to a very drastic denaturing force such as a very high pH, all of

the base pairs rapidly break in times less than 0.01 s. This does not involve unwinding
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FIGURE 6-12. The kinetics of T2 DNA denaturation in 0.08 M NaCI, 80% formamide. The

fraction of the absorbance at 259 nm associated with the native structure versus the time is

plotted . The reaction was initiated by heating the three samples to a loss in the native ultraviolet

spectrum of 25% (left line), 53% (middle line), and 95% (right line). Reproduced from M.

T. Record and B. H. Zimm, Biopolymers 11, 1435 (1972). Copyright © 1972 Biopolymers.
Reprinted by permission of John Wiley & Sons, Inc.

and strand separation as the native DNA can rapidly be formed by lowering the pH.

A detailed description of this mechanism has been developed (19).

The slow unwinding time could be a severe problem for the replication of large

DNAs. However, nature has solved this problem by creating enzymes that (i) can

make breaks in the DNA chains, thereby reducing the length of DNA that must be

rotated during the unwinding, and (ii) can unwind DNA.

As a final example, we consider the renaturation of separated DNA strands. DNA

can be denatured by raising the temperature significantly above the midpoint of the

melting transition or by raising the pH. After the strands have separated, native DNA

can be formed by lowering the temperature or lowering the pH. As might be expected,

the renaturation process is second order. The rate of reaction depends on the source of

the DNA and its length. The dependence on length can be eliminated by first sonicat-

ing the DNA to form fragments of about the same size. If the rates of renaturation are

measured at the same DNA concentration in moles of nucleotides per liter, they vary

by several orders of magnitude, as shown in Figure 6-13. The figure includes data for

polyA–polyU and a double-stranded RNA (MS-2 viral RNA). The scale at the top is

the number of nucleotide pairs in the genome. The larger the genome, the smaller

the number of complementary fragments. Only complementary strands can form

native DNA, so that the smaller the number of complementary strands, the slower

the rate. For polyU and polyA, every strand is complementary so that this system is

assigned a value of 1 on this scale. The renaturation process can be analyzed quantita-

tively. If the complementary strands are represented as A and A′, the reaction can be

written as

A + A′ k
−−→AA′ (6-44)
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Since the concentrations of A and A′ are equal, the rate equation is

−d[A]
dt

= k[A]2 (6-45)

which can be integrated to give

1

[A]
− 1

[A]0
= kt (6-46)

The data were found to obey this equation. The half-time for the reaction, that is,

when [A] = [A]0/2, is given by

t1∕2 = 1

k[A]0
(6-47)

In the aforementioned equations, the concentration should be equal to the

concentration of complementary strands, which we generally do not know. If

the total number of base pairs in the smallest repeating sequence is N, then the

concentration of complementary strands is proportional to the total concentration of

DNA, c0, divided by N. If this relationship is substituted in Eq. (6-47), we find that

c0t1/2 ∝ N. Thus, the total concentration of DNA times the half-time for renaturation

is a measure of N. A long half-time means that a given fragment will have to sample
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many other fragments before it finds its complement, so the sequence is complex. N
is a measure of the “complexity” of the DNA, and the scale on the top of Figure 6-13

can be equated to N. On this basis, the calf DNA is the most complex DNA that was

studied. The study of the kinetics of renaturation can be a useful probe of a gene. It

has been used, for example, to determine if fragments of a viral gene were present

in viral transformed cells (20).

This concludes the sampling of the application of kinetics to biological systems.

Many interesting studies have not been discussed, and many more remain to be done.

The study of the time dependence of biological processes is essential in the quest for

the elucidation of molecular mechanisms.
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PROBLEMS

6-1. The hydration of CO2 is catalyzed by the enzyme carbonic anhydrase. The over-

all reaction at neutral pH can be written as

CO2 + H2O ⇌ HCO−
3
+ H+

The steady-state kinetics of both hydration and dehydration have been stud-

ied at pH 7.1, 0.5∘C. Some typical data are given subsequently for an enzyme

concentration of 2.8 × 10−9 M.

Hydration Dehydration

103∕v(M−1 s) 103[CO2](M) 103∕v(M−1s) 103[CO−
3
](M)

36 1.25 95 2.0

20 2.5 45 5.0

12 5.0 29 10

6.0 20 25 15

Calculate the steady-state parameters for the forward and reverse reactions.

6-2. Studies of the inhibition of enzymes by various compounds often provide infor-

mation about the nature of the binding site and the mechanism. Competitive

inhibition is when the inhibitor, I, competes with the substrate for the catalytic

site. This mechanism can be written as

E + S ⇌ ES → E + P

E + I ⇌ EI

Derive the steady-state rate law for this mechanism and show that it follows

Michaelis–Menten kinetics when the inhibitor concentration is constant.

Assume that the inhibitor concentration is much greater than the enzyme

concentration.

6-3. In the text, the steady-state rate law was derived with the assumption that the

reaction is irreversible and/or only the initial velocity was determined. Derive

the steady-state rate law for the reversible enzyme reaction:

E + S ⇌ X ⇌ E + P

Show that the rate law can be put into the form

v =
(VS∕KS)[S] − (VP∕KP)[P]

1 + [S]∕KS + [P]∕KP
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where VS and VP are the maximum velocities for the forward and reverse reac-

tions, and KS and KP are the Michaelis constants for the forward and reverse

reactions.

When equilibrium is reached, v = 0. Calculate the ratio of the equilibrium con-

centrations of S and P, [P]/[S], in terms of the four steady-state parameters. This

relationship is called the Haldane relationship and is a method for determining

the equilibrium constant of the overall reaction.

6-4. The kinetics of the formation and breakdown of hydrogen-bonded loops or hair-

pins within small RNA molecules can be studied with relaxation methods since

the formation of the helical structures is accompanied by a spectral change. This

reaction can be represented as

Hydrogen bounded
k1−−−−⇀↽−−−−
k2

non-hydrogen bonded

What is the relaxation time for this reaction?

The relaxation time determined at a specific concentration was found to be 10 μs.

Calculate the individual rate constants if the equilibrium constant is 0.5.

If the concentration of the RNA is doubled, would the relaxation time get

smaller, larger, or stay the same?

6-5. Consider the binding of a protein, P, to a DNA segment (gene regulation).

Assume that only one binding site for P exists on the DNA and that the

concentration of DNA binding sites is much less than the concentration of P.

The reaction mechanism for binding can be represented as

P + DNA ⇌ P-DNA → P-DNA′

where the second step represents a conformational change in the protein. Calcu-

late the rate law for the appearance of P-DNA′ under the following conditions.

a. The first step in the mechanism equilibrates rapidly relative to the rate of

the overall reaction and [P-DNA] ≪ [DNA].
b. The intermediate, P-DNA, is in a steady state.

c. The first step in the mechanism equilibrates rapidly relative to the rate of

the overall reaction and the concentrations of DNA and P-DNA are com-

parable. Express the rate law in terms of the total concentration of DNA

and P-DNA, that is, [DNA] + [P-DNA].

d. The following initial rates were measured with an initial DNA concentra-

tion of 1 μM.



PROBLEMS 151

[P] (μM) 104 rate (M/s)

100 8.33

50 7.14

20 5.00

10 3.33

Which of the rate laws is consistent with the data?

6-6. Many biological reactions are very sensitive to pH. This can readily be incorpo-

rated into the rate laws because proteolytic reactions can be assumed to be much

faster than other rates in most cases. For example, in enzyme mechanisms the

ionization states of a few key protein side chains are often critical. Suppose that

two ionizable groups on the enzyme are critical for catalytic activity and that

one of them needs to be protonated and the other deprotonated. The proteolytic

reactions can be written as

EH2 ⇌ EH + H+ ⇌ E + 2H+

If only the species EH is catalytically active and the proteolytic reactions are

much more rapid than the other steps in the reaction, all of the rate constants

that multiply the free enzyme concentration in the rate law have to be multiplied

by the fraction of enzyme present as EH.

a. Calculate the fraction of free enzyme present as EH at a given pH. Your

answer should contain the concentration of H+ and the ionization constants

of the two side chains, KE1 = [E][H+]/[EH] and KE2 = [EH][H+]/[EH2].

b. Assume that ES in the Michaelis–Menten mechanism (Eq. (6-2)) also

exists in three protonation states, ESH2, ESH, and ES, with only ESH

being catalytically active. Calculate the fraction of the enzyme–substrate

complex present as EHS. Designate the ionization constants as KES1 and

KES2.

c. Use the results of parts A and B to derive equations for the pH depen-

dence of Vm, KM, and Vm/KM. Measurement of the pH dependence of the

steady-state parameters permits determination of the ionization constants

and sometimes identification of the amino acid side chains.
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CHAPTER 7

Fundamentals of Quantum Mechanics

7.1 INTRODUCTION

Quantum mechanics was developed because of the failure of Newtonian mechanics

to explain experimental results that emerged at the beginning of the 20th century.

For example, for certain metals, such as Na, electrons are emitted when light is

absorbed. This photoelectric effect has several nonclassical characteristics. First, for

light of a given frequency, the kinetic energy of the electrons emitted is independent

of the light intensity. The number of electrons produced is proportional to the

light intensity, but all of the electrons have the same kinetic energy. Second, the

kinetic energy of the photoelectron is zero until a threshold energy is reached,

and then the kinetic energy becomes proportional to the frequency. This behavior

is shown schematically in Figure 7-1, where the kinetic energy of the electrons

is shown as a function of the frequency of the radiation. An explanation of these

phenomena was proposed by Einstein, who, following Planck, postulated that

energy is absorbed only in discrete amounts of energy, h𝜈. A photon of energy

h𝜈 has the possibility of ejecting an electron, but a minimum energy is necessary.

Therefore,

kinetic energy = h𝜈 − h𝜈0 (7-1)

where h is Planck’s constant, 6.625 × 10−27 erg-s (6.625 × 10−34 J-s) and h𝜈0 is

the work function characteristic of the metal. This predicts that altering the light

intensity would affect only the number of photoelectrons and not the kinetic energy.

Furthermore, the slope of the experimental plot (Fig. 7-1) is Planck’s constant, h.

On the other hand, many other experiments, including the interference patterns

of light waves passing through two parallel slits, have illustrated the wave nature of

light. Specifically, such experiments have shown that light can be described as a wave

with a frequency, 𝜈, or wavelength, 𝜆, that is connected to its energy, E, by the familiar

Planck relationship:

E = h𝜈 = hc
𝜆

(7-2)
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FIGURE 7-1. Schematic representation of the photoelectric effect. The maximum kinetic

energy of an electron emitted from a metal surface when it is illuminated with light of fre-

quency 𝜈 is shown. The frequency at which electrons are no longer emitted determines the

work function, h𝜈0, and the slope of the line is Planck’s constant, h (Eq. (7-1)).

where c is the speed of light, 2.998 × 1010 cm∕s (2.998 × 108 m∕s). Note that the

product of the wavelength and the frequency is the speed of light: 𝜆𝜈 = c. According

to this description, light, or more generally radiation, can be envisaged as an electro-

magnetic sine wave that contains both electric and magnetic components, as shown in

Figure 7-2. This figure shows that the electric component of the wave is perpendicular

to the magnetic component and illustrates the relationship between the sine wave and

the wavelength of the light. The physical properties of light will be discussed further

in the context of spectroscopy in the last section of this chapter.

Returning to the photoelectric effect, the explanation given earlier postulates that

light is corpuscular and consists of discrete photons characterized by a specific fre-

quency or energy. How can this be reconciled with the well-known wave description

of light? The answer is that both descriptions are correct – light can be envisioned

as either discrete photons or a continuous wave. This wave-particle duality is a fun-

damental part of quantum mechanics. Although both descriptions are correct, one of

them may more easily explain a given experimental situation.

About this point in history, de Broglie suggested that this duality is applicable to

matter also, so that matter can be described as particles or waves. For light, the energy

is equal to the momentum, p, times the speed of light, c, and by Einstein’s postulate

is also equal to h𝜈:
E = h𝜈 = pc (7-3)

Furthermore, since 𝜆𝜈 = c, p = h/𝜆. For macroscopic objects, p = mv, where v is the

velocity and m is the mass. In this case, 𝜆 = h∕(mv), the de Broglie wavelength. These

fundamental relationships have been verified for matter by several experiments such

as the diffraction of electrons by crystals.
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FIGURE 7-2. Schematic representation of an electromagnetic sine wave. The electric field

is in the xz plane and the magnetic field in the xy plane. The electric and magnetic fields are

perpendicular to each other at all times. The wavelength, 𝜆, is the distance required for the

wave to go through a complete cycle.

The postulate of de Broglie can be extended to derive an important result of quan-

tum mechanics developed by Heisenberg in 1927, namely the uncertainty principle:

ΔpΔx ≥ ℏ (7-4)

where ℏ is defined to be Planck’s constant h divided by 2𝜋. In this equation, Δp rep-

resents the uncertainty in the momentum and Δx the uncertainty in the position. The

uncertainty principle means that it is not possible to determine the precise values of

the momentum, p, and the position, x. The more precisely one of these variables is

known, the less precisely the other variable is known. This has no practical conse-

quences for macroscopic systems but is crucial for the consideration of systems at

the atomic level. For example, if a ball weighing 100 grams moves at a velocity of

100 miles/hour (a good tennis serve), an uncertainty of 1 mile/hour in the speed gives

Δp ∼ 4.4 × 10−22 kg m/s and Δx ∼ 2 × 10−33 m. We are unlikely to worry about this

uncertainty! On the other hand, if an electron (mass = 9 × 10−28 g) has an uncertainty

in its velocity of 1 × 108 cm/s, the uncertainty in the position is about 1 Å, a large

distance in terms of atomic dimensions. As we will see later, quantum mechanics has

an alternative way of defining the position of an electron.

A second puzzling aspect of experimental physics in the late 1800s and early 1900s

was found in the study of atomic spectra. Contrary to the predictions of classical

mechanics, discrete lines at specific frequencies were observed when atomic gases at

high temperatures emitted radiation. This can only be understood by the postulation

of discrete energy levels for electrons. This was first explained by the famous Bohr

atom, but this model was found to have shortcomings, and the final resolution of the

problem occurred only when quantum mechanics was developed by Schrödinger and

Heisenberg in the late 1920s. We will only consider the development by Schrödinger,



158 FUNDAMENTALS OF QUANTUM MECHANICS

which is somewhat less complex than that of Heisenberg. The next section presents

the famous Schrödinger equation, which is able to describe the previously puzzling

results discussed earlier. For example, the wave-like behavior of electrons and the

discrete energy levels of atoms are described via the Schrödinger equation. Other

phenomena such as atoms tunneling through energy barriers can also be described

with this formalism and will be discussed in the following sections.

7.2 SCHRÖDINGER EQUATION

Schrödinger postulated that all matter can be described as a wave and developed

a differential equation that can be solved to determine the properties of a system.

Basically, this differential equation contains two important contributions, the kinetic

energy and the potential energy. Both of these are well-known concepts from classi-

cal mechanics, but they are redefined in the development of quantum mechanics. The

one-dimensional Schrödinger equation for a particle of mass m has the form

− ℏ
2

2m

d2
𝜓n(x)
dx2

+ U(x)𝜓n(x) = En𝜓n(x) (7-5)

In this equation, x is the position coordinate, and U(x) is the potential energy of the

system. For a given system with a known potential energy, this equation can be solved

to obtain the wavefunctions,𝜓n(x), and the associated energies, En, of the system. The

subscript n refers to a specific quantum state of the system, and En is the energy of

quantum state n. A more rigorous mathematical understanding of the Schrödinger

equation requires the use of quantum mechanical operators and complex numbers

and is beyond the scope of this book.

The Schrödinger equation given in Eq. (7-5) can be understood as the sum of

kinetic energy and potential energy terms on the left side and a total energy term on the

right side. Although these terms look very different from classical mechanics, the sum

of the kinetic and potential energies is still the total energy in quantum mechanics.

The key difference is that in classical mechanics, we know the exact location of the

particle, whereas in quantum mechanics, we can only know the probability of finding

the particle at any position x. The uncertainty principle discussed earlier (Eq. (7-4))

prevents us from knowing the exact location of a quantum mechanical particle, unless

its momentum is completely unknown. However, the wavefunction in Eq. (7-5) gives

us information about the probability of finding the particle at any point in space. In

particular, |𝜓n(x)|2dx is the probability of finding the particle between x and x + dx.

For this reason, |𝜓n(x)|2 is called the probability density. This probabilistic view of

matter, denoted the Born interpretation, is in contrast to the deterministic character

of Newtonian mechanics and has sparked considerable philosophical debate. In fact,

Einstein apparently never fully accepted this probabilistic view of nature. (Albert

Einstein: “God does not play dice with the universe.”)

It is important to realize that quantum mechanics reduces to classical mechanics

for the heavy objects that we encounter in our everyday life. If a particle has a large

mass, such as a tennis ball, its wavefunction will be highly localized around a certain
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point in space, with a high probability of being at that position. Moreover, as discussed

earlier, the uncertainties in the position and momentum of a macroscopic object have

no practical consequences. Such heavy objects will behave classically and can be

described by Newton’s equations of motion, where force is the product of the mass

and the acceleration. Lighter particles, such as electrons, are more delocalized and

cannot be pinned down to a certain point in space. These light particles exhibit quan-

tum mechanical behavior and do not obey Newton’s equations of motion. In these

cases, the average position of a particle can be calculated, but its specific position at

a given time is unknown.

For the remainder of this chapter, we will present the solutions of the Schrödinger

equation for different choices of the potential energy function associated with simple

model systems. The results will illustrate fundamental quantum mechanical princi-

ples as well as concepts that are relevant to vibrations and rotations in molecules and

to atomic and molecular spectra. The next chapter will extend these treatments to

larger systems that are more directly relevant to biological systems.

7.3 PARTICLE IN A BOX

As an example of a simple quantum mechanical system that leads to quantization

of energy levels, we consider a particle of mass m moving back and forth in a

one-dimensional box of length L. This model actually has some practical applica-

tion. It describes the movement of 𝜋 electrons that are delocalized over a large part

of a molecule, for example, biological molecules such as carotenoids, hemes, and

chlorophyll. This is not an ordinary box because inside the box, the potential energy

of the system is zero, whereas outside of the box, the potential energy is infinite, as

depicted in Figure 7-3.

Because the potential walls are infinitely high, the solution to this equation outside

of the box is easy—there is no chance the particle is outside the box, so the wave-

function must be 0. Inside the box, U = 0, and Eq. (7-5) can be easily solved. The

solution is

𝜓n(x) = A sin bx (7-6)

U=∞ U=∞U=0

0 X L

FIGURE 7-3. Quantum mechanical model for a particle in a one-dimensional box of length

L. The particle is confined to the box by setting the potential energy equal to 0 inside the box

and ∞ outside of the box.
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where A and b are constants. At the ends of the box, 𝜓n(x) must be zero. This happens

when sin n𝜋 = 0 and n is an integer, so b must be equal to n𝜋∕L. This causes 𝜓n(x)
to be 0 when x = 0 and x = L for all integral values of n. To evaluate A, we use the

concept that the probability of finding the particle in the interval between x and x +
dx is |𝜓n(x)|2dx. Because the particle must be in the box, the probability of finding

the particle in the box is 1, so

∫
L

0

|𝜓n(x)|2dx = ∫
L

0

A2 sin2
(n𝜋x

L

)
dx = 1 (7-7)

Evaluation of this integral gives A =
√

2∕L. Thus, the final result for the wavefunction

is

𝜓n(x) =
√

2∕L sin
(n𝜋x

L

)
(7-8)

Obviously n cannot be 0, as this would predict that there is no probability of finding

the particle in the box, but n can be any nonzero positive integer. The wavefunctions

for a few values of n are shown in Figure 7-4. As this figure illustrates, 𝜓n(x) is a sine

wave, with the “wavelength” decreasing as n increases. Moreover, the number of

nodes in the wavefunction, which is defined as the number of times the wavefunction

changes sign, going from positive to negative or negative to positive, increases as n
increases. The lowest state, with n = 1, has zero nodes, the next state, with n = 2, has

one node, and the nth state has n – 1 nodes.

To determine the energy of the particle, all we have to do is put Eq. (7-8) back into

Eq. (7-5) and solve for En. The resulting energy is

En = h2n2

8mL2
(7-9)

Thus, we see that the energy is quantized, and the energy is characterized by a series

of energy levels, as depicted in Figure 7-5. Each energy level, En, is associated with

Lx0

E
ne

rg
y

ψ3 = √2 / L sin(3πх / L) 

ψ2 = √2 / L sin(2πх / L) 

ψ1 = √2 / L sin(πх / L) 

FIGURE 7-4. Wavefunctions, 𝜓n(x), for the first three energy levels of the particle in a box

(Eq. (7-8)). The dashed lines show the probability of finding the particle at a given position x,

as given by |𝜓n(x)|2, scaled by a constant.
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FIGURE 7-5. Energy levels for a particle in a box (Eq. (7-9)). The energy levels are expressed

as n2E1, where E1 is the energy when n = 1.

a specific wavefunction, 𝜓n(x), and depends on the mass m of the particle and the

length L of the box. Note that the energy levels would be very widely spaced for a

very light particle, such as an electron, but would be very closely spaced for a macro-

scopic particle. Similarly, the smaller the box, the more widely spaced the energy

levels. For a tennis ball being hit on a tennis court, the ball is sufficiently heavy and

the court (box) sufficiently big so that the energy levels are a continuum for all prac-

tical purposes, and we do not even notice that the energy levels are quantized. The

uncertainty in the momentum and position of the ball cannot be blamed on quantum

mechanics in this case! The particle in a box illustrates how quantum mechanics can

be used to calculate the properties of systems and how quantization of energy levels

arises. The same calculation can be easily done for a three-dimensional box. In this

case, the energies of the quantized states are the sum of three terms identical to Eq.

(7-9), but with each of the three terms having a different quantum number.

The quantum mechanical description of matter does not permit the precise posi-

tion of the particle to be determined, a manifestation of the Heisenberg uncertainty

principle. However, the probability of finding the particle within a given segment of

the box can be calculated. For example, the probability of finding the particle in the

middle of the box, that is, between L/4 and 3L/4 for the lowest energy state is

∫
3L∕4

L∕4

𝜓
2
1
(x)dx =

(
2

L

)
∫

3L∕4

L∕4

sin2
(
𝜋x
L

)
dx (7-10)

Evaluation of this integral gives a probability of 0.82. The probability of finding the

particle within the middle part of the box is independent of L, the size of the box,

but does depend on the value of the quantum number n. For the second energy level,

n = 2, the probability is 0.50. The probability of finding the particle at position x in

the box is shown as a dashed line for the first three energy levels in Figure 7-4. As n
increases, the probability becomes more evenly distributed across the entire box, and

for very high n, we reach the classical limit of equal probability everywhere in the
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box, as one would envision if a tennis ball were bouncing back and forth between the

two walls at constant speed.

An important result of quantum mechanics is that not only do molecules exist in

different discrete energy levels, but the interaction of radiation with molecules causes

shifts between these energy levels. If energy or radiation is absorbed by a molecule,

the molecule can be raised to a higher energy state, whereas if a molecule loses energy,

radiation can be emitted. For both cases, the change in energy is related to the radiation

that is absorbed or emitted, namely, the change in energy state of the molecule, ΔE,

is

ΔE = h𝜈 = hc
𝜆

(7-11)

The change in energy, ΔE, is the difference in energy between specific energy levels

of the molecule, for example, E2 −E1, where 1 and 2 designate different energy levels.

It is important to note that since the energy is quantized, the light emitted or absorbed

between two particular states is always a specific single frequency. Equation (7-11)

can be applied to the particle in a box for the particle dropping from the n + 1 energy

level to the n energy level:

ΔE = h2

8mL2
[(n + 1)2 − n2] = h2

8mL2
(2n + 1) = hc

𝜆

(7-12)

If the particle is assumed to be an electron moving in a molecule 20 Å long and

n = 10, then 𝜆 ∼ 600 nm. This wavelength is in the visible region and has been

observed for 𝜋 electrons that are highly delocalized in molecules.

In practice, energy levels are sometimes so closely spaced that the frequencies of

light emitted appear to create a continuum of frequencies. This is a shortcoming of

the experimental method—in reality, the frequencies emitted are discrete entities. The

particle in a box is a simple application of quantum mechanics, but it illustrates several

important points that are also found in more complex calculations for molecular sys-

tems. First, the system can be described by a wavefunction. Second, this wavefunction

permits determination of the probability of important characteristics of the system,

such as positions. Finally, the energy of the system can be calculated and is found to be

quantized. Moreover, the energy can only be absorbed or emitted in quantized pack-

ages characterized by specific frequencies. Quantum mechanical calculations also tell

us what conditions are necessary for energy to be emitted or absorbed by a molecule.

These calculations tell us whether radiation will be emitted or absorbed and what

quantized packets of energy are available. These concepts will be developed further

in the chapters focusing on spectroscopy.

7.4 VIBRATIONAL MOTIONS

The vibrational and rotational motions of molecules can also be described in terms of

quantum mechanical models. A molecule comprised of N atoms has 3N coordinates,

or degrees of freedom, because each atom can move in three-dimensional space. The
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overall molecule can be described in terms of three translational motions associated

with the entire molecule moving in three-dimensional space and two or three rota-

tional motions for linear or nonlinear molecules, respectively. The remaining degrees

of freedom are associated with vibrational motions: a linear molecule has 3N−5 and

a nonlinear molecule has 3N−6 vibrational modes. For large macromolecules, the

number of different vibrations can be approximated to be 3N because the number of

translations and rotations is considered to be a small correction. In this section, we

discuss the quantum mechanical description of the vibrational motions in molecular

systems, including proteins and other large biomolecules.

A detailed analysis of all of the vibrational degrees of freedom of a macromolecule

is not possible, but a few general conclusions bear mention. First, the characteristic

vibration of each degree of freedom is a combination of the motions of many differ-

ent bonds. These characteristic motions are called normal modes of vibration. The

nature of these normal mode vibrations can be calculated very precisely for small

molecules, and the characteristics of some of the normal modes can be associated

with similar normal modes in macromolecules. Second, in some limiting cases, these

normal modes are dominated by the movement of a single or a restricted number of

chemical bonds. For example, the vibrations of C−H bonds, double bonds between

C, and double bonds between C and O are each associated with similar spectral char-

acteristics in many molecules. Third, the energy level distribution for each normal

mode can be determined by approximating each normal mode as a simple harmonic

oscillator, essentially a spring moving back and forth.

The remainder of this section will present the quantum mechanical description

of a simple harmonic oscillator and will connect the resulting wavefunctions and

energies to the vibrational motions in macromolecules. A simple harmonic oscillator

is characterized by a potential energy of the form

U(x) = 1

2
kx2 (7-13)

In this equation, k is a constant and x is the vibrational coordinate. If the oscillator is

thought of as a one-dimensional spring, the x coordinate is the coordinate along which

the spring moves back and forth, and k is a measure of the stiffness of the spring. For

a single bond, the x coordinate is the distance along the bond, and the origin of the

coordinate system is the equilibrium bond distance. The characteristic frequency of

the bond motion is

𝜈 =
(

1

2𝜋

)(
k
𝜇

)1∕2

(7-14)

where 𝜇 is the reduced mass of the system. For a complex normal mode, the reduced

mass is a weighted average of the masses; for our purposes, an exact calculation of

the reduced mass is not necessary.

We can solve the Schrödinger equation for the simple harmonic oscillator by sub-

stituting the potential energy given in Eq. (7-13) into Eq. (7-5). The resulting wave-

functions, 𝜓n(x), have the form

𝜓n(x) = (polynomial in x) × (Gaussian function) (7-15)
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FIGURE 7-6. The potential energy curve and associated energy levels (Eq. (7-16)) and wave-

functions (Eq. (7-15)) for a simple harmonic oscillator. The energy levels are equally spaced

with a separation of h𝜈 between levels.

where the polynomial is a special function called a Hermite polynomial, and the Gaus-

sian function is of the form exp

(
−
√

mk∕4ℏ2x2

)
. The energies associated with these

wavefunctions are

En =
(

n + 1

2

)
h𝜈 (7-16)

in terms of the frequency 𝜈 of the vibrational motion. For this system, the quantum

number n can be any nonnegative integer, including zero.

The potential energy for a harmonic oscillator, together with the energy levels and

wavefunctions, are shown in Figure 7-6. Note that in the lowest energy state, n =
0, the normal mode still has an intrinsic energy, h𝜈∕2. This is called the zero-point

energy and is possessed by all molecules, even at the hypothetical temperature of

absolute zero. The zero-point energy for the particle in a box model is E1 shown in

Figure 7-5. The harmonic oscillator wavefunctions look qualitatively similar to the

particle in a box wavefunctions, as can be seen by comparing Figures 7-4 and 7-6. In

both cases, the effective “wavelength” decreases and the number of nodes increases

as the quantum number n increases. On the other hand, there are several important

differences between these two systems. The harmonic oscillator wavefunctions have

nonzero probability beyond the edge of the potential energy curve into what is called

the classically forbidden region, as will be discussed in the next section. This was not

true for the particle in a box because the energy barriers between inside and outside

the box were assumed to be infinite. Additionally, the energy levels are equally spaced

with constant splittings of h𝜈 for the harmonic oscillator (Figure 7-6), in contrast to

the increasing splittings for the particle in a box (Figure 7-5).

For real molecules, the vibrational motion deviates from this simple harmonic

model at high energies, and the energy levels become more closely spaced at the top of

the potential well. The approximate potential energy function for a vibrational coor-

dinate of a real molecule (anharmonic oscillator) and the associated energy levels are

depicted in Figure 7-7. For a diatomic molecule, the x coordinate is the internuclear

distance, whereas for larger molecules it is a combination of internuclear distances

associated with the normal mode vibration. Quantum mechanical calculations can be
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FIGURE 7-7. Energy levels for an anharmonic oscillator. The energy levels become more

closely spaced at higher energies.

carried out with anharmonic potential energy functions to provide direct correlation

of theory with experimental findings. Note that near the bottom of the potential well,

harmonic and anharmonic oscillators behave quite similarly so that the harmonic

oscillator is a good model at room temperature, where only the lowest-energy vibra-

tional levels are accessible.

For a C−H bond, the reduced mass can be approximated as the mass of the hydro-

gen atom. A useful tool for identifying the nature of a given vibrational mode is to

substitute deuterium for hydrogen. According to Eq. (7-14), the ratio of the charac-

teristic frequency of the vibration is

𝜈H

𝜈D

=
(

mD

mH

)1∕2

=
√

2 (7-17)

This substitution of deuterium for hydrogen is very useful for determining if the

motion of a hydrogen atom is the dominant factor in a given vibrational mode. The

same procedure works for an N−H bond, an O−H bond, and so forth.

7.5 TUNNELING

Tunneling is the phenomenon in which a particle penetrates into or through a region

that is classically forbidden. If the particle were treated classically, it would not be

able to enter the classically forbidden region. For example, if we throw a tennis ball

at a solid wall, it will bounce back to us because it behaves classically. If the tennis

ball behaved quantum mechanically, however, there would be some probability that

it would tunnel through the wall and end up on the other side. The large mass of

the ball prevents this type of quantum mechanical tunneling, but electrons and some-

times even hydrogen atoms are light enough that they are able to penetrate barriers

in this way.

In classical mechanics, the total energy is defined to be the sum of the kinetic

energy and the potential energy, and the kinetic energy is always positive. Therefore,

the total energy can never be less than the potential energy in classical mechanics.
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FIGURE 7-8. Schematic illustration of a particle tunneling through a potential energy barrier

of height U, which is greater than the total energy, E, of the particle. The potential energy is zero

outside the shaded region and U inside the shaded region. This figure illustrates tunneling into

a classically forbidden region as the wavefunction propagates from left to right. For simplicity,

the reflection is not shown.

In quantum mechanics, however, this situation is possible. An example is depicted in

Figure 7-8, where the total energy E becomes less than the potential energy U at a wall

that has a finite height and width. In classical mechanics, if a particle on the left side

of the wall moves toward this wall with energy E<U, it would hit the wall and bounce

back again, remaining on the left side of the wall because it does not have enough

energy to surmount the wall. In quantum mechanics, if a particle is in a quantum state

with energy E < U, then it could still get through the wall and into the region on the

other side. This possibility can be understood by solving the Schrödinger equation for

this system. As depicted in Figure 7-8, the particle is oscillating on the left side of the

wall with a wavefunction that resembles a particle in a box wavefunction. However,

it also has a nonzero probability of being in the region of the wall itself, where it

decays smoothly, as well as in the region on the right side of the wall, where it starts

to oscillate again.

Another example of tunneling is seen in the harmonic oscillator wavefunctions

from the previous section. At the edges of the potential energy curve, the wavefunc-

tions penetrate into the classically forbidden region, as shown in Figure 7-6. In these

regions, the energy of the quantum state is less than the potential energy, yet the par-

ticle still has finite probability of occupying these regions. The classical analog can

be understood by envisioning a ball that is rolling back and forth on a curved (har-

monic) track. When the ball has zero kinetic energy at the top of its trajectory, it

stops and turns around and rolls back in the opposite direction. By contrast, a quan-

tum mechanical particle can go beyond this point and penetrate into the classically

forbidden region.

A biologically relevant example of tunneling is hydrogen transfer in proteins. In

these situations, the hydrogen nucleus can tunnel from one heavy atom to another.

At a protein configuration that is conducive to tunneling, the hydrogen nucleus can

be viewed as moving in a symmetric double-well potential, as shown in Figure 7-9.

The solution of the Schrödinger equation for this system results in the wavefunctions

depicted in this figure. These wavefunctions illustrate that the hydrogen nucleus has

finite probability of penetrating the barrier region, which is classically forbidden. The

splitting between the lowest two hydrogen vibrational energy levels is denoted the

tunneling splitting and determines the probability of tunneling. An experimentally
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FIGURE 7-9. Schematic depiction of the potential energy curve along the hydrogen coor-

dinate for a hydrogen transfer reaction and the lowest two energy levels and wavefunctions

associated with the motion of the hydrogen nucleus. The solid and dashed lines show the

wavefunctions for the first and second energy levels, respectively, and the tunneling splitting

(enhanced for visualization purposes) is the difference between these two energy levels. The

penetration of the wavefunctions into the classically forbidden barrier region illustrates hydro-

gen tunneling through the barrier.

measurable quantity that reflects hydrogen tunneling is the kinetic isotope effect,

defined as the ratio of the rate constants for hydrogen and deuterium transfer. The

tunneling probabilities for hydrogen and deuterium transfer differ because the wave-

functions depend strongly on the mass of the particle: deuterium is heavier and there-

fore acts more classically and is more localized in space, with smaller splittings

between energy levels and a lower probability of tunneling. Thus, the kinetic iso-

tope effect can become very large when tunneling is occurring. For example, the

net hydrogen atom transfer catalyzed by the enzyme soybean lipoxygenase exhibits

a kinetic isotope effect of ∼80 at room temperature. This unusually high kinetic

isotope effect can only be explained through quantum mechanical tunneling. Note

that tunneling of other atoms that are heavier than hydrogen and deuterium is possi-

ble but much less likely because the tunneling probability depends exponentially on

the mass.

7.6 ROTATIONAL MOTIONS

The rotational motions of macromolecules do not tend to play an important biological

role, but the form of the rotational wavefunctions is a significant component of the

hydrogenic atom wavefunctions, which in turn are used as the foundation to describe

the electronic structure of larger biomolecules. In this section, we briefly discuss the

quantum mechanical description of the rotational motions of a molecule. For the sim-

plest case of a diatomic molecule, the system can be described as a rotating dumbbell

with one atom at each end of a massless stick of length r0, the bond length of the

molecule. This system can be converted to an even simpler model in terms of the

center of mass and the reduced mass 𝜇 associated with the two atoms. In this simpler
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model, a particle with mass 𝜇 is on one end of a stick of length r0 rotating freely

in space with the other end held fixed. Alternatively, this system can be described in

terms of a particle moving on the surface of a sphere, envisioned as a small rubber ball

moving on the surface of a much larger beach ball with radius r0. These two models

are completely equivalent and require the introduction of spherical coordinates with

radial coordinate r and two angular coordinates 𝜃 and 𝜑. The Schrödinger equation

is more complex than Eq. (7-5) because three dimensions are involved. The potential

energy is zero, so the left side of the Schrödinger equation includes only a kinetic

energy term.

In this model, the radial coordinate is fixed at r0, and the wavefunctions depend

only on the two angular coordinates. The wavefunctions are special functions called

spherical harmonics, typically denoted Yl,ml
(𝜃, 𝜑), and depend on two quantum num-

bers, l and ml. The quantum numbers l and ml reflect the magnitude and direction,

respectively, of the angular momentum of the particle. The magnitude of the total

angular momentum is [l(l + 1)]1∕2
ℏ, and the z-component of this angular momen-

tum is mlℏ. For this reason, l is called the angular momentum quantum number. The

energies of the quantum states depend on only the l quantum number and have the

form

El =
l(l + 1)ℏ2

2mr2
0

(7-18)

The angular momentum quantum number l can be any nonnegative integer, including

zero, and the other quantum number ml can be any integer between –l and l, lead-

ing to 2l+1 quantum states with the same energy El. Quantum states that have the

same energy are called degenerate, and the degeneracy of the level is the number of

states with the same energy. Similar to the particle in a box, the spacing between the

rotational energy levels increases as the quantum number l increases.

This model gives the rotational states that would be applicable to a diatomic

molecule with fixed bond length. When it is extended to more complicated molecules,

the energy levels have the same form, but the quantum number is often denoted J
instead of l, and the denominator of the energy in Eq. (7-18) becomes 2I, where I is

the moment of inertia of the molecule. Moreover, often the energy levels are written

in terms of a rotational constant defined as B = ℏ∕(4𝜋I) to facilitate the analysis of

rotational spectra:

EJ = hBJ(J + 1) (7-19)

Typically the splittings between the rotational energy levels are much smaller than

the splittings between the vibrational energy levels. As a result, at room temperature,

many of the rotational energy levels are populated, whereas only the lowest vibra-

tional energy level is populated. As mentioned earlier, the rotational states will be

used in the description of hydrogenic atoms in Chapter 8. Before moving on to the

electronic structure of atoms and molecules in Chapter 8, however, we will summa-

rize the basic concepts of spectroscopy to provide the foundation for future chapters

that will focus on specific types of spectroscopy.
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7.7 BASICS OF SPECTROSCOPY

Spectroscopy is a powerful tool for studying biological systems. It often provides a

convenient method for the analysis of individual components in a biological system

such as proteins, nucleic acids, and metabolites. It can also provide detailed infor-

mation about the structure and mechanism of biomolecules. In order to obtain the

maximum benefit from this tool and to use it properly, a basic understanding of the

fundamentals of spectroscopic phenomena, as well as of the instrumentation currently

available, is necessary. A detailed understanding involves complex theory, but a grasp

of the important concepts and their applications can be obtained without resorting

to advanced mathematics and theory. We will attempt to do this by emphasizing the

physical ideas associated with spectral phenomena and utilizing a few of the concepts

and results from molecular theory.

Very simply stated, spectroscopy is the study of the interaction of radiation with

matter. Radiation is characterized by its energy, E, which is linked to the frequency,

𝜈, and wavelength, 𝜆, of the radiation by the Planck relationship given in Eq. (7-2).

The useful wavelength of radiation for spectroscopy extends from X-rays, 𝜆 ∼ 1 −
100nm, to microwaves, 𝜆 ∼ 105 − 106 nm. For biology, the most useful radiation for

spectroscopy is in the ultraviolet and visible region of the spectrum. The entire use-

ful spectrum is shown in Figure 7-10, along with the common names for the various

regions of the spectrum. If radiation is envisaged as both an electric and a magnetic

wave, then its interactions with matter can be considered as electromagnetic phe-

nomena because matter is made up of positive and negative charges. We will not be

concerned with the details of this interaction but will focus on the aspects that are

essential to spectroscopic methods.

It is useful to consider the fundamental properties of light waves to better under-

stand some of the experimental methods that will be discussed later. Thus far, we

have considered light to be a periodic electromagnetic wave in space that could be

characterized, for example, by a sine function:

I = I0 sin
(

2𝜋x
𝜆

)
(7-20)

High energy

Wavelength (nm)

Low energy

10310 105 107 109 1011

X-rays UV-Vis IR microwaves radiowaves

10−3 10−1

γ-rays

FIGURE 7-10. Schematic representation of the wavelengths associated with electromagnetic

radiation. The wavelengths, in nanometers, span 14 orders of magnitude. The common names

of the various regions are indicated approximately (UV is ultraviolet, Vis is visible, and IR is

infrared).
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Here I is the electric or magnetic field, I0 is the maximum value of the electric or

magnetic field, x is the distance along the x-axis, and 𝜆 is the wavelength. A light

wave can also be periodic in time, as illustrated in Figure 7-11. In this case,

I = I0 sin (2𝜋𝜈t) = I0 sin (𝜔t) (7-21)

Now, I is the light intensity, I0 is the maximum light intensity, 𝜈 is the frequency in

s−l, as defined in Figure 7-11, 𝜔 is the frequency in radians (𝜔 = 2𝜋𝜈), and t is the

time. The velocity of the propagating wave is 𝜆𝜈, which in the case of electromagnetic

radiation is the speed of light, that is, 𝜆𝜈 = c. If light of the same frequency and max-

imum amplitude from two sources is combined, the two sine functions will be added.

If the two light waves start with zero intensity at the same time (t = 0), the two waves

add and the intensity is doubled. This is called constructive interference. If the two

waves are combined with one of the waves starting at zero intensity and proceeding

to positive values of the sine function, whereas the other begins at zero intensity and

proceeds to negative values, the two intensities cancel each other out. This is called

destructive interference. Obviously, it is possible to have cases in between these two

extremes. In such cases, a phase difference is said to exist between the two waves.

Mathematically, this can be represented as

A
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B

A

A+B

A+B

Time

1/ν

B

FIGURE 7-11. Examples of constructive and destructive interference. Constructive interfer-

ence: when the upper two wave forms of equal amplitude and a phase angle of 0∘ (or integral

multiples of 2𝜋) are added (left), a sine wave with twice the amplitude and the same frequency

results (right). Destructive interference: when the lower two wave forms are added (left), the

amplitudes of the two waves cancel (right). The phase angle in this case is 90∘ (or odd integral

multiples of 𝜋/2).
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I = I0 sin(𝜔t + 𝛿) (7-22)

where 𝛿 is called a phase angle and can be either positive or negative. When many

different waves of the same frequency are combined, the intensity can always be

described by such a relationship. These phenomena are shown schematically in

Figure 7-11.

A standard way of carrying out spectroscopy is to apply continuous radiation and

then look at the intensity of the radiation after it has passed through the sample of

interest. The intensity is then determined as a function of the frequency of the radia-

tion, and the result is the absorption spectrum of the sample. The color of a material

is determined by the wavelength of the light absorbed. For example, if white light

shines on blood, blue/green light is absorbed so that the transmitted light is red. Sev-

eral examples of absorption spectra are shown in Figure 7-12. We will consider why

and how much the sample absorbs light a bit later, but you are undoubtedly already

familiar with the concept of an absorption spectrum.

The use of continuous radiation is an effective way to carry out an experiment, but

there is an interesting mathematical relationship that permits a different approach to

the problem. This mathematical operation is the Fourier transform. The principle of

a Fourier transform is that if the frequency dependence of the intensity, I(𝜈), can be

determined, it can be transformed into a new function, F(t), that is a function of the

time, t. Conversely, F(t) can also be converted to I(𝜈). Both of these functions contain

the same information. Why then are these transformations advantageous? It can be

quite time consuming to determine I(𝜈), but a short pulse of radiation can be applied

very quickly. Basically, what this transformation means is that looking at the response

of the system to application of a pulse of radiation, such as that shown in Figure 7-13,

is equivalent to looking at the response of the system to sine wave radiation at many

different frequencies. In other words, a square wave is mathematically equivalent to

adding up many sine waves of different frequencies, and vice versa. This is shown

schematically in Figure 7-13, where the addition of sine waves with four different

frequencies produces a periodic “square” wave. The larger the number of sine waves

added, the more “square” the wave becomes. In mathematical terms, a square wave

can be represented as an infinite series of sine functions, a Fourier series.

The mathematical equivalence of timed pulses and continuous waves of many

different frequencies has profound consequences in determining the spectroscopic

properties of materials. In many cases, the use of pulses permits thousands of exper-

iments to be done in a very short time. The results of these experiments can then be

averaged, producing a far superior frequency spectrum in a much shorter time than

could be determined by continuous wave methods. In later chapters, we will be deal-

ing with both continuous wave spectroscopy and Fourier transform spectroscopy. It

is important to remember that both methods give identical results. The method of

choice is the one that produces the best data in the shortest time, and in some cases

at the lowest cost.

With this brief introduction to the underlying theoretical principles of spec-

troscopy, we are ready to proceed with consideration of specific types of spectroscopy

and their application to biological systems. Before proceeding to these chapters on
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FIGURE 7-12. Absorption of light by biological molecules. The absorbance scale is arbi-

trary and the wavelength, 𝜆, is in nanometers. Chlorophyll a solutions absorb blue and red

light and are green in color. DNA solutions absorb light in the ultraviolet and are colorless.

Oxyhemoglobin solutions absorb blue light and are red in color.

spectroscopy, however, we discuss the electronic structure of atoms and molecules

in the next chapter. Understanding the electronic structure of atoms and molecules

is important for interpreting the results of spectroscopic studies. Moreover, the

application of electronic structure methods to biomolecules provides structural,

energetic, and mechanistic insight into biological systems.
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FIGURE 7-13. The upper part of the figure shows sine waves of four different frequencies,

and the lower part of the figure is the sum of the sine waves, which approximates a square

wave pulse of radiation. When sine waves of many more frequencies are included, the time

dependence becomes a pulsed square wave. This figure illustrates that the superposition of

multiple sine waves is equivalent to a square wave pulse, and vice versa. This equivalency is

the essence of Fourier transform methods. Copyright by Professor T. G. Oas, Duke University.

Reproduced with permission.
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PROBLEMS

7-1. The energies required to break the C–C bond in ethane, the “triple bond” in

CO, and a hydrogen bond are about 88, 257, and 4 kcal/mol, respectively. What

wavelengths of radiation are required to break these bonds?

7-2. Calculate the energy and momentum of a photon with the following wave

lengths: 150 pm (X-ray), 250 nm (ultraviolet), 500 nm (visible), and 1 cm

(microwave).

7-3. The maximum kinetic energy of electrons emitted from Na at different wave

lengths was measured with the following results.

𝜆 (Å) Maximum kinetic energy (eV)

4500 0.40

4000 0.76

3500 1.20

3000 1.79

Calculate Planck’s constant and the value of the work function from these data.

(1 eV = 1.602 × 10−19 J.)

7-4. Calculate the de Broglie wavelength for the following cases:

a. An electron in an electron microscope accelerated with a potential of 100 kV.

b. A He atom moving at a speed of 1000 m/s.

c. A bullet weighing 1 g moving at a speed of 100 m/s.

d. Assume that the uncertainty in the speed is 10% and calculate the uncertainty

in the position for each of the three cases.

7-5. The particle in a box is a useful model for electrons that can move relatively

freely within a bonding system such as 𝜋 electrons. Assume that an electron is

moving in a “box” that is 50 Å long, that is, a potential well with infinitely high

walls at the boundaries.

a. Calculate the energy levels for n = 1, 2, and 3.

b. What is the wavelength of light emitted when the electron moves from the

energy level with n = 2 to the energy level with n = 1?

c. What is the probability of finding the electron between 12.5 and 37.5 Å for

n = 1?

7-6. The zero-point energies for two different vibrational manifolds are 9.55 × 103

and 1.19 × 104J/mol.
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a. Calculate the frequency of light emitted for a transition between the first

energy level and the zero-point energy for each of these manifolds.

b. In terms of the harmonic oscillator model, which of these manifolds has the

“stiffer” spring?

c. For both cases, the radiation associated with a transition between energy lev-

els 20 and 19 occurs at a longer wavelength (smaller wave number) than the

radiation associated with a transition between the energy levels 2 and 1. How

do you explain this?

7-7. Sketch the graph of I versus t for sine wave radiation that obeys the relationship

I = I0 sin (𝜔t + 𝛿) for 𝛿 = 0, 𝜋/4, 𝜋/2 and 𝜋.

Plot the sum of the sine waves when the sine wave for 𝛿 = 0 is added to that

for 𝛿 = 0 or 𝜋/4, or 𝜋/2, or 𝜋. This exercise should provide you with a good

understanding of constructive and destructive interference.

Do your results depend on the value of 𝜔? Briefly discuss what happens when

waves of different frequency are added together.





CHAPTER 8

Electronic Structure of Atoms
and Molecules

8.1 INTRODUCTION

In Chapter 7, we introduced the fundamental concepts of quantum mechanics and

investigated several model systems that could be solved exactly. We started with the

particle in a box, which can be used as a model for describing π-bonding systems,

and then we discussed models for describing the vibrational and rotational motions

of molecules. In particular, the harmonic oscillator model is very useful for describing

the vibrational modes of macromolecules.

In this chapter, we investigate the electronic structure of atoms and molecules. First

we discuss the electronic wavefunctions for hydrogenic atoms, which are comprised

of one nucleus and one electron. We are able to solve this problem analytically with

exact mathematical methods. Because large macromolecules contain many nuclei

and many electrons, however, the quantum mechanical description of such systems

becomes more complicated. Thus, we need to make several approximations to be able

to study large macromolecules with quantum mechanical methods, and the problems

can no longer be solved analytically. Instead, we need to develop computer algorithms

to solve the Schrödinger equation numerically for larger systems. In the later sections

of this chapter, we describe the approximations that must be made and discuss the

computational methods that have been developed to allow the quantum mechanical

study of biomolecules. We also present several examples of how quantum chemistry

can provide insights into biological systems.

8.2 HYDROGENIC ATOMS

In Chapter 7, we focused mainly on the nuclear motions, specifically vibrations and

rotations. However, molecules are made up of atoms, which in turn are made up of

both nuclei and electrons. A complete understanding of molecular systems requires

us to consider the motion of the electrons as well as the nuclei. In this section, we

focus on hydrogenic atoms, which are comprised of a nucleus with charge Ze and an
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electron with charge –e. Here Z is the atomic number for a neutral atom. The potential

energy of this system is U(r) = −Ze2∕r, where r is the distance between the electron

and the nucleus. For this system, we can solve the Schrödinger equation exactly, but

as soon as we have more than a single electron, we need to make significant approx-

imations. These more complicated systems, as well as applications to biomolecules,

will be discussed later in this chapter.

The solution of the Schrödinger equation for hydrogenic atoms requires us to sep-

arate the system into a radial part and an angular part. In this case, such a separation

is rigorous because the potential energy has no angular component. The wavefunc-

tions for the angular part are the same as those obtained for the particle on a sphere

discussed in Chapter 7 because we can view the nucleus as fixed in space, and the

electron is moving on a sphere of radius r centered at the nucleus for each value of r.

Thus, as explained in Chapter 7, the angular part of the wavefunction is given by the

wavefunctions Yl,ml
(𝜃, 𝜑) and is described in terms of the same two quantum num-

bers l and ml. The radial part of the hydrogenic wavefunction depends on the principal

quantum number n and the angular momentum quantum number l and is of the form

Rnl(r) = rl × (polynomial in r) × (decaying exponential in r) (8-1)

The total wavefunction is of the form Yl,ml
(𝜃, 𝜑)Rnl(r), where the principal quantum

number n can be any positive integer, the angular quantum number l can be any non-

negative integer up to n−1, and ml can be any integer from –l to l.
Describing each wavefunction with three quantum numbers may seem compli-

cated, but each quantum number has a physical meaning. The principal quantum

number n determines the energy of the state. The energies of the quantum states are

En = −Z2∕n2 (8-2)

in units of Rydberg, given as RH = 2.180 × 10−18 J. As shown in Figure 8-1, the

splittings between the energy levels decrease as the quantum number n increases.

Eventually the energy levels become continuous, and the electron separates com-

pletely from the nucleus, a process called ionization. The quantum numbers l and

ml designate the magnitude and direction, respectively, of the angular momentum

associated with the electron moving around the nucleus. Specifically, the angular

momentum quantum number l determines the magnitude of the total angular momen-

tum, [l(l + 1)]1∕2
ℏ, and the third quantum number ml determines the z-component of

the angular momentum, mlℏ. These three quantum numbers also dictate the shapes

and orientations of the wavefunctions.

Analysis of these wavefunctions leads to the familiar hydrogenic orbitals, where

s, p, and d correspond to the quantum numbers l= 0, 1, and 2, respectively. Here an

orbital is simply a one-electron wavefunction. The hydrogenic orbitals are typically

denoted as follows: 1s (n= 1, l= 0), 2s (n= 2, l= 0), 2p (n= 2, l= 1), 3s (n= 3, l= 0),

3p (n= 3, l= 1), 3d (n= 3, l= 2), and so forth. As for the model used to describe

molecular rotations discussed in Chapter 7, the degeneracy of each energy level with

quantum number l is 2l+ 1. This degeneracy for l = 1 leads to the three 2px, 2py, and
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FIGURE 8-1. Energies of the hydrogen atom orbitals, illustrating that the splittings between

energy levels become smaller as the principal quantum number n increases. Here RH denotes

the Rydberg unit of energy.

TABLE 8-1. Lowest Five Hydrogen Atom Orbitalsa

Orbital n l Wavefunction Energy

1s 1 0 exp(−𝜌∕2) −1 RH

2s 2 0 (2 − 𝜌) exp(−𝜌∕2) −0.25 RH

2px 2 1 x exp(−𝜌∕2) −0.25 RH

2py 2 1 y exp(−𝜌∕2) −0.25 RH

2pz 2 1 z exp(−𝜌∕2) −0.25 RH

an and l are the principal and angular momentum quantum numbers, 𝜌 = 2r∕na0, r = (x2 + y2 + z2)1∕2 in

Cartesian coordinates, a0 is the Bohr radius with a value of 52.9 pm, and RH denotes the Rydberg unit of

energy. Each wavefunction should also be multiplied by a constant to ensure that the total probability over

all space is unity.

2pz orbitals that are aligned along the x, y, and z axes, respectively. For hydrogenic

atoms, the energies for all states with quantum number n are degenerate (Eq. (8-2)).

Thus, the degeneracy of the n = 2 level is four (one 2s and three 2p orbitals).

The wavefunctions and energies of the 1s, 2s, and 2p orbitals are given in Table 8-1,

and the wavefunctions are depicted in Figure 8-2. The 1s orbital has no nodes and

has a maximum value at the nucleus, decaying exponentially as a function of the

radial coordinate r. The 2s orbital looks similar but has one radial node, which can

be envisioned as a ball of radius 𝜌 = 2, where the wavefunction is zero on the sur-

face of the ball and has a different sign inside the ball than it has outside the ball.

The 2p orbitals do not have a radial node but have an angular node, which means
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FIGURE 8-2. Wavefunctions associated with the 1s, 2s, 2px, 2py, and 2pz hydrogen atomic

orbitals. The plus and minus signs indicate the sign of the wavefunction. The 2s orbital has one

radial node and the 2p orbitals each have one angular node.

that the wavefunction is zero on an entire plane, called a nodal plane, and changes

sign across this plane. For example, the 2px orbital is zero in the yz plane and has a

different sign for positive and negative values of x. These general trends continue for

the higher energy states: the number of radial nodes is n – l – 1, and the number of

angular nodes is l. For example, the 3d orbitals have no radial nodes and two angu-

lar nodes and therefore have more complicated shapes that arise from the two nodal

planes.

We can also interpret these orbitals in terms of the probability of finding an electron

in any specified region of space. Often we are interested in the probability of finding

the electron within a spherical shell of radius r and thickness dr. This spherical shell

can be envisioned as the region between a ball of radius r + dr and another ball of

radius r nested inside the first ball. The probability of finding the electron in this

spherical shell region is P(r)dr = r2Rnl(r)2dr for a given orbital, where P(r) is called

the radial distribution function and can be viewed as a type of probability density. The

most probable radius at which the electron will be found is specified by the maximum

of P(r) and can be found by simple differentiation. For example, the most probable

radius for a 1s orbital in hydrogen is at r = a0, the Bohr radius, which is 52.9 pm.

This distance is called the Bohr radius because it is related to the radius of the lowest

energy electron orbit in Bohr’s early model of the hydrogen atom, which is considered

to be obsolete but still has some qualitatively correct features.

For biological applications, we are interested in going beyond hydrogenic atoms,

which have only a single electron, and treating many electrons quantum mechanically.

The electronic wavefunctions and energies for molecular systems can be calculated

to obtain structural, energetic, and kinetic information. For example, these methods

can be used to identify the lowest energy geometry of a molecule, to characterize the

strength of a hydrogen-bonding interaction between two molecules, or to calculate the

activation energy for a chemical reaction. For such systems with many electrons, we

can no longer solve the Schrödinger equation exactly, and we must invoke approxi-

mations and develop numerical techniques. The remainder of this chapter will explore

these more complicated situations.
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8.3 MANY-ELECTRON ATOMS

In the previous section, we discussed the solution of the Schrödinger equation for

hydrogenic atoms, which have only a single nucleus and a single electron. In this

section, we will discuss many-electron atoms, which have a single nucleus and

many electrons. In subsequent sections, we will move on to molecules, which have

many nuclei and many electrons. Studying many-electron atoms before moving on

to the more complicated case of molecular systems allows us to introduce some key

concepts that will also be applicable to molecules. These concepts include electron

spin, the orbital approximation, the Aufbau or building-up principle, and the Pauli

principle.

For many-electron atoms, the nucleus is assumed to be fixed, and the electrons

are moving around this fixed nucleus. For these types of systems, the Schrödinger

equation can be written as

− ℏ
2

2me

N∑
i=1

∇2
i Ψn(r) + U(r)Ψn(r) = EnΨn(r) (8-3)

Here me is the mass of an electron, and r represents the coordinates of all of the N
electrons in the atom. Analogous to the simpler equation in one dimension given in

Eq. (7-5), this equation can be understood as the sum of kinetic energy and potential

energy terms on the left side and a total energy term on the right side. The first term

on the left side of Eq. (8-3) corresponds to the kinetic energy of all electrons, where
∑N

i=1
∇2

i
Ψn(r) denotes the sum of second derivatives of the wavefunction with respect to

each electronic coordinate. The second term on the left side of Eq. (8-3) corresponds

to the potential energy, which includes the electrostatic Coulomb interactions among

the electrons and the nucleus.

The potential energy associated with electrostatic interactions is U(r) = q1q2∕r
for two particles with charges q1 and q2 separated by distance r. Thus, the potential

energy for a system with N electrons is

U(r) = −
N∑

i=1

Ze2

ri
+

N∑
i=1

N∑
j<i

e2

rij
(8-4)

Here ri is the distance between electron i and the nucleus, and rij is the distance

between electrons i and j. The first term is the sum of the interactions of all electrons

with the nucleus of charge Ze, and the second term is the sum of the interactions of all

pairs of electrons. (The double summation notation in the second term means that all

unique pairs of electrons are included.) Note that the sign of the electron–nucleus

interaction is negative, indicating an attractive interaction that lowers the overall

energy, while the sign of the electron–electron interaction is positive, indicating a

repulsive interaction that raises the overall energy. All of these terms are included on

the left side of Eq. (8-3), leading to a complicated differential equation that cannot

be solved analytically.
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This problem can be simplified if we neglect the electron–electron interactions.

In this case, the left side of Eq. (8-3) can be separated into a sum of terms that each

depend on the coordinates of only one electron. We can then assume that each electron

occupies an orbital, which is simply another term for a one-electron wavefunction,

and the total wavefunction is just the product of these orbitals. When we are describ-

ing atoms, these orbitals resemble the hydrogenic atom orbitals that were discussed in

the previous section. Thus, we can just place the electrons in the orbitals denoted 1s,

2s, 2p, and so forth to create the many-electron wavefunction. The energy associated

with this wavefunction is the sum of the energies of the occupied orbitals. When the

electron–electron interactions are included, we can no longer separate Eq. (8-3) in this

way, and this solution is only approximate. Nevertheless, it is a useful approximate

model for qualitatively describing atomic wavefunctions. For example, the electronic

wavefunction for the He atom, which has two electrons, can be described as the prod-

uct of two 1s orbitals, where two electrons occupy the 1s orbital, and the associated

energy is twice the energy of the 1s orbital.

Before proceeding to atoms with more electrons, we need to introduce the

additional concept of electron spin. The spin of an electron is an intrinsic angular

momentum often described in terms of the motion of the electron about its own axis.

Conveniently, the spin can be described similarly to the orbital angular momentum

associated with an electron moving around the nucleus, as discussed for hydrogenic

atoms in the previous section. Instead of l and ml, we use s and ms for the spin

quantum number and the spin magnetic quantum number, respectively. Analogous

to the orbital angular momentum, the magnitude of the spin angular momentum is

[s(s + 1)]1∕2
ℏ, and the z-component of the spin angular momentum is msℏ. For an

electron, the only value of s that is allowed is s = 1∕2, and the spin can lie in two

different orientations corresponding to ms = ±1∕2. Often the ms = +1∕2 state is

denoted spin up or 𝛼, and the ms = −1∕2 state is denoted spin down or 𝛽.

The total electronic wavefunction not only includes the spatial orbitals such as 1s,

2s, and so forth, but also includes a spin component. Moreover, the total wavefunc-

tion must satisfy the very important Pauli principle, which states that the electronic

wavefunction changes sign when the labels of any two electrons are interchanged.

This property is also referred to as the antisymmetry principle because a function

that changes sign when two coordinates or labels are interchanged is called an anti-

symmetric function. Consider a wavefunction Ψ(1, 2) for two electrons with labels

1 and 2, which denote both the spatial coordinates r1 and r2 and the spins of the two

electrons. The Pauli principle implies that

Ψ(1, 2) = −Ψ(2, 1) (8-5)

A familiar consequence of the Pauli principle is the Pauli exclusion principle, which

states that no more than two electrons can occupy any given orbital, and two electrons

in a single orbital must have paired spins.

Using the principles discussed so far, we can generate approximate elec-

tronic wavefunctions for atoms using the Aufbau principle, where Aufbau means

building up in German. As discussed in the previous section, the energies of the
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orbitals for hydrogenic atoms are determined by only the principal quantum number,

leading to degeneracies for all orbitals with the same principal quantum number,

even if the angular momentum quantum number is different. For example, the 2s,

2px, 2py, and 2pz orbitals all have the same energy. However, for atoms with more

than a single electron, the degeneracy between the different angular momentum

quantum numbers is broken because of shielding effects. Specifically, the additional

electrons exert a shielding effect so that each electron does not feel the full charge

of the nucleus but rather feels a slightly lower nuclear charge, leading to a decrease

in the electron–nucleus attractive interaction. Because the shapes of s and p orbitals

are different, with an electron in an s orbital more likely to be found closer to the

nucleus, the shielding effect is less for electrons in s orbitals than for electrons in p
orbitals, and the s orbital is lower in energy than the p orbitals for a given principal

quantum number. Similar effects influence the relative energies of the orbitals with

higher angular momentum quantum numbers.

As a result of these effects, the energy ordering of the atomic orbitals is 1s, 2s, 2p,

3s, 3p, 4s, 3d, and so forth. According to the Aufbau principle, the electronic wave-

function for an atom is generated by sequentially filling up these orbitals with two

electrons per orbital, starting with the lowest energy orbital. To completely define

this process for degenerate orbitals, we also need to invoke Hund’s rule, which is

comprised of two parts. The first part states that the electrons will occupy differ-

ent orbitals associated with a given energy level before doubly occupying any of

them. The second part states that all electrons in the singly occupied orbitals will

have parallel spins. The physical basis for the electrons occupying different orbitals

is that the energetically unfavorable electron–electron repulsion and shielding effects

are typically smaller when electrons are in different orbitals. The physical basis for

the unpaired electrons having the same spins will be discussed subsequently in the

context of energetically favorable interactions between electrons with parallel spins.

Figure 8-3 illustrates how the Aufbau principle and Hund’s rule can be used to deter-

mine the electronic configuration for the nitrogen atom.

To understand how these principles can be used to create electronic wavefunc-

tions, we consider the example of the He atom, which has a nucleus of charge +2e

2px 2py 2pz

2s

1s

FIGURE 8-3. The electronic configuration for the nitrogen atom, which has seven electrons.

The 1s and 2s orbitals are each doubly occupied, and the three degenerate 2p orbitals are singly

occupied.
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and two electrons. According to the Aufbau principle, the lowest energy configura-

tion corresponds to both electrons occupying the 1s orbital given by 𝜓1s(r). Accord-

ing to the Pauli exclusion principle, one electron must be 𝛼 (spin up) and the other

electron must be 𝛽 (spin down). Finally, we invoke the antisymmetry principle and

create a wavefunction that will change sign when the two electrons are interchanged.

The resulting wavefunction is of the form

Ψ1s2 (1, 2) =
(

1

2

)1∕2

𝜓1s(r1)𝜓1s(r2)[𝛼(1)𝛽(2) − 𝛼(2)𝛽(1)] (8-6)

Here the labels 1 and 2 refer to the first and second electron, respectively, with spatial

coordinates given by r1 and r2, respectively. Note that if you interchange the labels 1

and 2 in Eq. (8-6), the wavefunction changes sign, thereby satisfying Eq. (8-5). This

wavefunction is often denoted 1s2 because there are two electrons in the 1s orbital.

For two-electron systems, we are able to construct electronic wavefunctions that

satisfy the Pauli principle using mathematical intuition. Unfortunately, this approach

does not work for systems with more electrons. In these cases, we need to use more

advanced mathematical methods to construct the electronic wavefunctions. In addi-

tion, up to this point we have assumed that the orbitals are simply the hydrogenic

atom orbitals, but usually these are not the optimal orbitals. In the next two sections,

we will discuss numerical techniques that can be used to construct electronic wave-

functions that satisfy the Pauli principle and generate optimal orbitals that lead to

lower energies. The methods described in the subsequent sections will be useful for

determining electronic wavefunctions for many-electron atoms as well as molecules.

8.4 BORN–OPPENHEIMER APPROXIMATION

For atoms, we have assumed that the nucleus is fixed and the electrons move around

this fixed nucleus. This assumption is reasonable in that we can define the coordi-

nate system for the electrons such that the much heavier nucleus is at the origin.

The situation becomes more complicated when there are many nuclei, such as in

molecules. Solving the Schrödinger equation for all electrons and all nuclei in a

large macromolecule is not computationally practical, even using advanced numer-

ical techniques. A key simplification that is central to most of quantum chemistry

is the Born–Oppenheimer approximation. This approximation is based on the fact

that nuclei are much heavier than electrons and therefore move more slowly. As a

result, the electrons can be considered to be moving in the field of fixed nuclei. In

other words, the electrons are assumed to respond instantaneously to the motion of

the nuclei. A helpful analogy is the motion of a horse and the swarm of flies around

her head: as the horse walks along, the flies move much faster and appear to respond

instantaneously to the horse’s motion and thus to move as a cloud surrounding her

head. Similarly, as the nuclei in a molecule move, the electrons respond so quickly

that we can treat the electrons as moving in the field of fixed nuclei at each nuclear

geometry.
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We can also describe the Born–Oppenheimer approximation in the framework

of the Schrödinger equation. For a system made up of nuclei and electrons, this

equation includes kinetic energy terms for the electrons and the nuclei, as well as

potential energy terms for the interactions among the electrons and nuclei. Accord-

ing to the Born–Oppenheimer approximation, the nuclei are moving so slowly that

the kinetic energy of the nuclei and the nuclear–nuclear repulsion term are con-

sidered separately. In this case, we only need to solve the electronic Schrödinger

equation, which includes the kinetic energy of the electrons and the electron–electron

and electron–nucleus potential energy interactions, for fixed nuclear positions. This

electronic problem is much easier to solve and can be written as

− ℏ
2

2me

N∑
i=1

∇2
i Ψn(r;R) + U(r,R)Ψn(r;R) = En(R)Ψn(r;R) (8-7)

Here all of the electronic coordinates are denoted by r, and all of the nuclear coor-

dinates are denoted by R. The potential energy term for a system of M nuclei and N
electrons is of the form

U(r,R) = −
M∑

I=1

N∑
i=1

ZIe
2

riI
+

N∑
i=1

N∑
j<i

e2

rij
(8-8)

This expression is very similar to the one used for many-electron atoms (Eq. (8-4))

except that the first term is summed over all nuclei, where riI is the distance between

electron i and nucleus I. Equation (8-7) is very similar to the Schrödinger equation for

many-electron atoms (Eq. (8-3)) except for the dependence on the nuclear coordinates

R. The semicolon in the wavefunction indicates that it depends explicitly on r but

only parametrically on R. This means that for each set of fixed nuclear coordinates

R, we solve this equation to obtain the electronic wavefunctions and energies for that

particular R, that is, Ψn(r;R) and En(R). We repeat this procedure for all possible

sets of nuclear coordinates R to obtain the wavefunctions and energies that depend

parametrically on R.

According to the Born–Oppenheimer approximation, the potential energy function

for the nuclei is given by

U(R) = E0(R) +
M∑

I=1

M∑
J<I

ZIZJe2

RIJ
(8-9)

The first term on the right side of this equation is the energy of the lowest energy state

(n = 0) obtained by solving the electronic Schrödinger equation given in Eq. (8-7) for

all nuclear coordinates R, and the second term on the right side corresponds to the

repulsive interactions between all pairs of nuclei. The double summation notation

in this second term indicates that we are summing over all unique pairs of nuclei,

where RIJ is the distance between nucleus I and nucleus J. The simplest example is a

diatomic molecule, where the only nuclear coordinate that corresponds to a vibration



186 ELECTRONIC STRUCTURE OF ATOMS AND MOLECULES

Internuclear distance, RRe

E
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0

FIGURE 8-4. The potential energy curve, U(R), for a diatomic molecule. The coordinate R
corresponds to the internuclear distance, and the minimum of this curve corresponds to the

equilibrium bond length Re.

is the internuclear distance. (The other five degrees of freedom are associated with

translations and rotations of the diatomic molecule.) In this case, we can solve Eq.

(8-7) for each internuclear distance R to obtain E0(R), and the second term in Eq.

(8-9) is comprised of the repulsion interaction between the two nuclei. Figure 8-4

depicts the potential energy curve, U(R), that is generated by plotting the potential

energy given in Eq. (8-9) as a function of the internuclear distance R. For molecules

with more degrees of freedom, the potential energy surface will depend on all of the

nuclear vibrational coordinates, after removing the translations and rotations.

8.5 MOLECULAR ORBITAL THEORY

In Section 8.3, we were able to construct the electronic wavefunction for the He atom

using mathematical intuition. If we want to study molecules, however, we need to use

more advanced techniques. One of the most powerful techniques for this purpose is

molecular orbital (MO) theory. In MO theory, we construct MOs from a linear com-

bination of atomic orbitals, which are one-electron wavefunctions typically centered

on the nuclei. The underlying concepts of the Aufbau principle and the Pauli princi-

ple still hold, but in this case, the electrons occupy MOs rather than atomic orbitals.

Thus, we fill up the MOs with pairs of electrons starting with the lowest energy MO.

The easiest way to understand MO theory is to consider a homonuclear diatomic

molecule, starting with H2. Assume that we have two 1s atomic orbitals, with one

centered on hydrogen nucleus A and the other centered on hydrogen nucleus B.
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We denote these two atomic orbitals 1sA and 1sB, respectively. We can then create

bonding and antibonding MOs from these atomic orbitals by taking the sum and the

difference, respectively:

𝜓bond = N+(1sA + 1sB)

𝜓anti = N−(1sA − 1sB) (8-10)

where the dependence on the electronic coordinate is omitted for notational simplic-

ity. The constant prefactors, N+ and N−, ensure that the total probability of the electron

being anywhere in space is unity for each of these MOs. Recall from Chapter 7 that

the probability of finding the electron at any point in space is proportional to the

square of the wavefunction, which is called the probability density. The probability

densities corresponding to the wavefunctions given in Eq. (8-10) are:

𝜓bond
2 = N2

+[1sA
2 + 1sB

2 + 2(1sA1sB)]

𝜓anti
2 = N2

−[1sA
2 + 1sB

2 − 2(1sA1sB)] (8-11)

The terms 1sA
2 and 1sB

2 are the probability densities associated with the atomic

orbitals on hydrogen nucleus A and B, respectively. The additional term, ±2(1sA1sB),
is denoted the overlap density and is positive for the bonding MO and negative for the

antibonding MO, corresponding to constructive and destructive interference, respec-

tively. The concepts of constructive and destructive interference were discussed in

the context of light waves in Chapter 7. In the present case, constructive interference

refers to the two atomic orbitals having the same sign in the internuclear region, lead-

ing to positive overlap density, and destructive interference refers to the two atomic

orbitals having opposite signs in the internuclear region, leading to negative overlap

density.

The overlap density term is important because it reflects the probability of finding

the electron in the internuclear region between the two hydrogen nuclei A and B.

As shown in Figure 8-5, when this term is positive, as in the bonding MO, there

is extra probability in this internuclear region. In this case, the total probability of

finding the electron between the two nuclei is greater than it would be if the electron

were confined to one of the atomic orbitals. When this term is negative, as in the

antibonding MO, there is a diminished probability in this internuclear region. In this

case, the total probability of finding the electron between the two nuclei is smaller

than it would be if the electron were confined to one of the atomic orbitals. This

is a general characteristic of bonding and antibonding orbitals: bonds form when

electronic density accumulates between the nuclei due to constructive interference of

atomic orbitals.

Another important property of bonding and antibonding orbitals such as those

given in Eq. (8-10) is that the energy of the bonding orbital is lower than the energy

of the antibonding orbital. Moreover, the energy of the bonding orbital is lower than

the energies of the individual atomic orbitals, whereas the energy of the antibonding

orbital is greater than the energies of the individual atomic orbitals. Furthermore,
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(a) (b)

FIGURE 8-5. Schematic depiction of the bonding and antibonding MOs for a homonuclear

diatomic molecule, where the two nuclei are represented by filled circles. The solid lines depict

the 1s atomic orbitals, and the dashed lines depict the MOs defined in Eq. (8-10). Figure 8-5(a)

depicts constructive interference between two 1s atomic orbitals, associated with a bonding

MO. Figure 8-5(b) depicts deconstructive interference between two 1s atomic orbitals, asso-

ciated with an antibonding MO. Note that the bonding orbital has increased electronic density

in the internuclear region, whereas the antibonding orbital has decreased electronic density in

this region and becomes zero at the midpoint.

H 1s

ψanti

ψbond

ψanti

ψbond

H 1s He 1s He 1s

(a) (b)

FIGURE 8-6. MO diagrams for H2 (a) and He2 (b) diatomic molecules. Note that antibond-

ing is slightly more energetically unfavorable than bonding is energetically favorable. H2 is

a stable species because two electrons are in the bonding MO, which is lower in energy than

the separated atoms. He2 is not a stable species because the two additional electrons are in the

antibonding MO, leading to a higher energy than the separated atoms.

antibonding is slightly more energetically unfavorable than bonding is energetically

favorable, as depicted in Figure 8-6 for the H2 molecule. These properties can be

shown mathematically by substituting the wavefunctions in Eq. (8-10) into the

Schrödinger equation (Eq. (8-7)) to determine the associated energies. The mathe-

matics is somewhat involved, however, so we will not pursue this matter further. We

can use the same Aufbau principle for H2 that we used for atomic wavefunctions

and place the two electrons with paired spins in the lowest energy MO, which in

this case is the bonding MO. As depicted in Figure 8-6, this configuration is lower

in energy than the separated H atoms, so H2 is a stable species. On the other hand,

if we consider He2, which has 4 electrons, the extra two electrons would be placed
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σ-bonding π-bonding

+ + + +

++– –
– –

FIGURE 8-7. Schematic depiction of 𝜎 MOs comprised of either s or p orbitals with cylin-

drical symmetry about the interatomic axis and a 𝜋 MO comprised of p orbitals that are

perpendicular to the interatomic axis for a diatomic molecule. The antibonding MOs corre-

spond to changing the signs for one of the orbitals in each pair.

in the antibonding orbital, and the overall energy would be greater than that of the

separated He atoms (Figure 8-6). As a result, He2 is not a stable species and is not

found in nature. However, if we remove one electron, creating the He2
+ cation, there

are two electrons in the bonding MO and one electron in the antibonding MO, and

the overall energy is lower than that of the separated He atoms. Thus, the He2
+

molecule is a stable species.

The same process can be used to describe homonuclear diatomic molecules with

more electrons. In general, we can build N MOs from N atomic orbitals. For this

purpose, it is convenient to introduce 𝜎 and 𝜋 MOs: 𝜎 orbitals have cylindrical sym-

metry about the internuclear axis, and 𝜋 orbitals are perpendicular to the internuclear

axis. A schematic depiction of 𝜎 and 𝜋 MOs is given in Figure 8-7. In MO theory, all

orbitals of the appropriate symmetry will contribute to those types of MOs, but often

we can use a simpler description if orbitals are well-separated in energy. An illus-

trative example is O2, where the two oxygen atoms are placed along the z-axis. We

consider only the valence orbitals, defined to be the 2s and 2p orbitals, because the

1s core orbitals are not expected to participate in bonding. In terms of the 𝜎 MOs, the

2s orbitals on each oxygen atom can form bonding and antibonding orbitals, analo-

gous to those given in Eq. (8-10), and the 2pz orbitals on each oxygen atom can form

bonding and antibonding orbitals, leading to a total of two bonding and two anti-

bonding 𝜎 MOs. In terms of the 𝜋 MOs, the 2px and 2py orbitals on the two oxygen

atoms can combine to create two bonding and two antibonding 𝜋 MOs. The resulting

MO diagram for O2 is shown in Fig. 8-8, where the subscripts g and u denote the

German words gerade and ungerade, translating to even and odd, respectively, for

the symmetry of the orbitals.

In general, the MO diagrams for diatomic molecules can be constructed in this

manner. Depending on the relative energies of the 2s and 2p atomic orbitals, the rela-

tive energies of the MOs can shift. In particular, the order of the 2𝜎g and 1𝜋u orbitals

changes for certain diatomic molecules, such as N2. Moreover, for heteronuclear

diatomic molecules, such as HF, the relative weightings of the atomic orbitals on the
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2σu

1σu

1σg

1πg

2σg

1πu

O 2p

O 2s O 2s

O 2p

FIGURE 8-8. Schematic MO diagram for the O2 diatomic molecule. An analogous diagram

can be used for F2, but the order of the 2𝜎g and 1𝜋u orbitals should be switched for Li2, Be2,

B2, C2, and N2.

two atoms will be different, rather than equally combined as in Eq. (8-10), and the

bonds become polar. For HF, the bonding orbitals have greater contributions from

atomic orbitals on F, and the antibonding orbitals have greater contributions from

atomic orbitals on H.

8.6 HARTREE–FOCK THEORY AND BEYOND

The creation of bonding and antibonding MOs for diatomic molecules is relatively

straightforward. When we get to more complicated molecules, however, we can no

longer rely on simple combinations of atomic orbitals. Instead, we need to have

a more general approach for generating the electronic wavefunctions. An essential

requirement is that the wavefunctions must be antisymmetric with respect to inter-

change of any two electrons, as dictated by the Pauli principle. For this purpose, we

can use a Slater determinant form of the wavefunction. The mathematical details of

Slater determinants are beyond the scope of this book, and we will simply view this

as a way to combine occupied MOs with appropriate spin components to generate an

antisymmetric wavefunction. This is the basis of Hartree-Fock theory (2).

For large molecules, we cannot simply guess the atomic orbitals that will be com-

bined to make each MO. Instead, we define basis functions that are combined to
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construct all of the MOs. In practice, we choose a basis set comprised of Nbf basis

functions, denoted 𝜑
𝜇
(r1). The basis functions are often chosen to have the form of

the s, p, and d hydrogenic atom orbitals and are centered on all of the nuclei in the

system. The size and flexibility of the basis set needs to be sufficient to adequately

describe the total electronic wavefunction of the system. Each MO, denoted 𝜓i(r1),
is described as a linear combination of these Nbf basis functions:

𝜓i(r1) =
Nbf∑
𝜇=1

ci𝜇𝜑𝜇
(r1) (8-12)

Here the MO coefficients, ci𝜇, tell us how the basis functions are combined for the

MO 𝜓i(r1). The MOs given in Eq. (8-12) can be combined with spin components to

obtain the total antisymmetric wavefunction for a particular molecule.

We can calculate the total energy by substituting the wavefunction for a specified

set of MOs into the Schrödinger equation given in Eq. (8-7). Consider a system of N
electrons with N/2 MOs that are each occupied with two electrons of opposite spin.

For this system, the Hartree–Fock energy is:

E = 2

N∕2∑
i=1

hi +
N∕2∑
i=1

N∕2∑
j=1

[2Jij − Kij] (8-13)

Here the summations are over all doubly occupied MOs. The first term is a sum over

hi, which includes the kinetic energy and the electron–nucleus interaction for the

ith MO. The electron–nucleus interaction can be viewed as the classical Coulom-

bic attraction between the electronic charge cloud with probability density |𝜓i(r1)|2
and all of the nuclei. The second term arises from the electron–electron interactions

and therefore includes a double summation representing all pairs of electrons. This

electron–electron interaction term is comprised of two contributions: the Coulomb

terms, Jij, and the exchange terms, Kij. The Coulomb term is associated with the clas-

sical Coulomb repulsion between electronic charge clouds with probability densities|𝜓i(r1)|2 and |𝜓j(r2)|2.

The exchange term does not have a simple classical interpretation and arises

from interactions between electrons with the same spin (parallel spins). Because

the exchange term is positive and appears with a negative sign in the total energy

given in Eq. (8-13), the exchange interactions lower the energy of the system. Thus,

the exchange term can be viewed as the energetically favorable contribution from

correlated motion between electrons with parallel spins. Moreover, analysis of the

exchange terms for systems with unpaired spins can be used to justify the second

part of Hund’s rule stating that the lowest energy wavefunction corresponds to a

configuration in which all electrons in singly occupied orbitals have parallel spins.

The next challenge is to determine the coefficients in Eq. (8-12) for a particular

molecule. For this purpose, we invoke an important theorem of quantum mechanics:

the variation principle. The variation principle states that if an arbitrary wavefunction

is used to calculate the energy, the calculated value is always greater than or equal to
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the true energy. Given this theorem, the goal is to find the MO coefficients that will

lead to the lowest energy of the system. The general procedure, which is called the

variational method, is to substitute the wavefunction into the Schrödinger equation

(Eq. (8-7)) and solve for the coefficients that minimize the energy. When all electrons

are paired, the energy is given by Eq. (8-13). The variational method produces a set of

coupled differential equations, which are called the Hartree–Fock equations. These

equations can be used to solve for the coefficients that minimize the energy. This

procedure is called a self-consistent-field (SCF) method because the equations need

to be solved iteratively: an initial guess for the MO coefficients leads to a new set of

coefficients, which are then used to generate another new set of coefficients, and so

forth until the MO coefficients no longer change significantly and are considered to

be converged. We will not go into the details of this procedure, but a wide range of

numerical methods have been developed for this purpose.

The variational method can be illustrated by considering the H2 molecule

discussed earlier. Let us choose a basis set comprised of the two basis functions, 1sA

and 1sB, defined to be 1s atomic orbitals centered on each hydrogen nucleus. We

assume that the two electrons are paired in the same MO, which we denote 𝜓1(r1).
Then we expand this MO in terms of the two basis functions, 1sA and 1sB, to obtain

𝜓1 = c1A1sA + c1B1sB (8-14)

where the dependence on the electronic coordinate is omitted for notational

simplicity. According to the variational principle, our goal is to determine the coef-

ficients, c1A and c1B, of the two basis functions that will lead to the lowest energy

of the system. Solving the Hartree–Fock equations resulting from the variational

method, we find that the two coefficients are equal, c1A = c1B, leading to the MO

given by 𝜓bond in Eq. (8-10). For this simple problem, we were able to determine

the lowest energy wavefunction from symmetry arguments. For systems with more

electrons and more complicated basis sets, however, we need to use the numerical

framework provided by Hartree–Fock theory.

Relying on physical intuition, we might choose to use the hydrogenic atom orbitals

as the basis functions in Eq. (8-12). However, the form of these atomic orbitals is

not conducive to the efficient calculation of integrals required for the variational

method described earlier. Instead, typically the basis functions are chosen to be linear

combinations of simpler functions designed to mimic the hydrogenic atom orbitals.

According to the variational method, as we add more basis functions, the energy of

the system will decrease and get closer to the true energy. The best Hartree–Fock

energy is determined by increasing the basis set until the energy no longer changes

significantly, or is converged to the desired level of accuracy. John Pople won the

Nobel Prize in 1998 for his development of these types of computational methods in

quantum chemistry.

So far, we have discussed ab initio methods, which are rigorously defined to be

methods based on first principles of quantum mechanics and do not involve any

experimental input. For applications to large biomolecules, ab initio methods such as

Hartree–Fock theory are computationally expensive, especially in conjunction with
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large basis sets. The main expense is the calculation of the integrals required for deter-

mination of the Coulomb and exchange terms in the energy expression given by Eq.

(8-13). For this reason, a variety of semiempirical methods have been developed for

the study of larger systems. In semiempirical methods, the integrals are not calculated

exactly but rather are estimated using a prescribed set of physically motivated rules.

Many of the integrals are set to zero and therefore do not need to be calculated at all.

Other integrals are approximated by simple functional forms with parameters that

are fit to reproduce experimental data for a set of molecules. Semiempirical methods

are much more computationally efficient than ab initio methods. The disadvantage of

semiempirical methods, however, is that they tend to be reliable only for molecules

that are closely related to the molecules used in the parameterization procedure. Thus,

semiempirical methods must be used with care.

A variety of ab initio methods that have been developed recently provide a

more rigorous but computationally expensive strategy. The difference between

the exact energy and the Hartree–Fock energy is called the electron correlation

energy. Advanced ab initio methods have been designed to account for some of the

electron correlation energy and are available in a wide range of popular quantum

chemistry programs. However, such ab initio methods are not directly applicable to

large biomolecules due to the computational expense. An alternative, more efficient

approach is density functional theory (DFT), which is discussed in the next section.

8.7 DENSITY FUNCTIONAL THEORY

DFT is a very powerful method in quantum chemistry for studying large molecules

because it is able to strike a balance between accuracy and computational efficiency

(3). In DFT, the Schrödinger equation is represented in terms of the electronic density,

𝜌(r), where r is a three-dimensional spatial coordinate, instead of the 3N-dimensional

total electronic wavefunction. The electronic density is related to the probability of

finding the electrons anywhere in space. In particular, 𝜌(r)dV tells us the probability

of finding electrons in a volume element dV centered at a point r in space. If we

integrate the electronic density over all space, we obtain the number of electrons in

the system. The underlying principle of DFT is that the total energy of the system

is a functional of the electronic density. A functional is defined to be a function of

another function: in this case, the energy is a function of the electronic density, which

is a function of position. Thus, the energy functional is expressed as E[𝜌(r)]. If the

electronic density in three-dimensional space is provided, this functional provides the

energy of the system associated with that density.

In principle, DFT is an exact theory. In practice, however, we need to use approx-

imate methods because we do not know the form of the exact energy functional.

Most current implementations of DFT for chemical and biological systems rely on

the Kohn–Sham formalism, which closely resembles Hartree–Fock theory in spirit,

except the MOs are called Kohn–Sham orbitals. The electronic density, 𝜌(r), can be

obtained by summing over the probability densities of the N occupied Kohn–Sham

orbitals. The kinetic energy terms, as well as the potential energy terms associated
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with the classical Coulomb interactions among the electrons and nuclei, are included

in a manner analogous to Hartree–Fock theory. In DFT, however, additional contri-

butions to the energy are included through the use of a density functional.
A detailed discussion of the origin and form of density functionals is beyond the

scope of this book. To understand the basic purpose of density functionals, we point

out that they account for both electron exchange and electron correlation effects.

Recall that the Hartree–Fock energy includes contributions from exchange terms,

which are associated with the correlated motion between electrons with parallel spins.

In the energy expression given by Eq. (8-13), the classical electron–electron Coulomb

terms are denoted by Jij., and the exchange terms are denoted by Kij. Many density

functionals replace all or a portion of the Hartree–Fock exchange terms with approxi-

mate terms. In addition, density functionals add electron correlation, which is defined

to be the difference between the exact energy and the Hartree–Fock energy and thus

is completely missing in Hartree–Fock theory. A large number of different density

functionals have been developed over the years. The most widely used density func-

tionals contain parameters that have been determined by fitting to known properties,

such as geometries, energies, frequencies, and thermochemical properties of large

sets of molecules. The resulting functionals tend to be reliable only for molecules

that are related to those in the set used in the parameterization procedure. The devel-

opment of more general functionals based on rigorous derivations is a direction of

continued research.

In practice, we need to consider several important points when performing DFT

calculations on macromolecules. First, we need to choose a sufficiently large and flex-

ible basis set to adequately describe the system. Second, we need to choose a density

functional that is appropriate for this type of system. For example, certain density

functionals are better at describing hydrogen-bonding interactions, while other den-

sity functionals are better at describing transition metals. In many cases, performing

calculations with multiple functionals is useful for comparative purposes. Keeping

all of this in mind, DFT has provided significant insights into chemical, biological,

and physical systems. Along with John Pople, Walter Kohn won the Nobel prize in

1998 for the development of DFT.

8.8 QUANTUM CHEMISTRY OF BIOLOGICAL SYSTEMS

In this section, we explain how to use the quantum chemistry methods discussed

earlier to better understand biological systems. According to the Born–Oppenheimer

approximation, the nuclei move on a potential energy surface defined by U(R) given

in Eq. (8-9). This potential energy surface is generated by solving the electronic

Schrödinger equation (Eq. (8-7)) to obtain the electronic energy for all nuclear config-

urations and adding the nuclear–nuclear interaction term. In Chapter 7, we discussed

the concept of normal modes of vibration that characterize the motion of a molecule.

In general, each normal mode is a combination of the motions of many different

bonds, although certain normal modes are dominated by the motion of one or a

few chemical bonds. In quantum chemistry calculations, it is often convenient to



8.8 QUANTUM CHEMISTRY OF BIOLOGICAL SYSTEMS 195

characterize points on the potential energy surface in terms of these normal mode

coordinates.

In general, the potential energy surface is a complex multidimensional surface. For

a nonlinear molecule comprised of N nuclei, there are 3N−6 vibrational degrees of

freedom after removing the three translational and three rotational degrees of freedom

for the overall molecule, leading to a 3N−6-dimensional potential energy surface.

Note that a diatomic molecule is much simpler because the potential energy surface

is only one-dimensional, as depicted in Figure 8-4. In this simpler case, it is easy

to generate the entire one-dimensional curve as a function of the internuclear bond

length R. From this curve, we are able to determine the equilibrium bond length,

which is the value of R at the minimum of the curve, and the frequency of the vibra-

tional mode, which is related to the second derivative at the minimum of the curve.

The situation becomes much more complicated for larger molecules, which can have

hundreds of degrees of freedom, and we can no longer visualize the potential energy

surface in this way.

Clearly, generating the entire multidimensional surface for a large molecule is not

practical. Instead, we focus on identifying and characterizing the important points on

this surface. Figure 8-9 depicts a two-dimensional potential energy surface to illus-

trate the types of points that are of interest. To determine the stable conformations

of a molecule, we want to find the minima on the potential energy surface because

the forces on all nuclei vanish at the minima. For large molecules, typically there

are many different minima on the potential energy surface. Although the most stable

R1
R2

Min

Min

TS

FIGURE 8-9. Two-dimensional potential energy surface illustrating two minima, denoted as

Min, and a transition state, denoted as TS. The coordinates R1 and R2 are chosen to be the

normal modes at the TS, which is a first-order saddle point, as shown by the negative curvature

along R1 and the positive curvature along R2 (thick dark lines). The minimum energy path

from the TS down to the two minima is shown by the thick dark line associated with negative

curvature at the TS.
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conformation corresponds to the global minimum (the minimum of lowest energy),

the other minima, called local minima, may also represent stable conformations that

are chemically relevant. Often we are interested in the relative energies of these sta-

ble conformations because they provide information about the relative populations of

these species.

In practice, the minima on multidimensional potential energy surfaces can be

found using computer algorithms designed to minimize the energy as a function of the

nuclear coordinates. Mathematically, a minimum is a specific type of stationary point,

which is defined as a point for which the derivative of the energy with respect to all

nuclear coordinates is zero. However, not all stationary points are minima. To deter-

mine which stationary points are minima, we need to calculate the second derivatives

of the energy with respect to the nuclear coordinates. The characterization of station-

ary points is more straightforward in terms of the normal mode coordinates. When

the second derivatives are positive along all coordinates, the stationary point is a min-

imum. When the second derivatives are positive along all normal mode coordinates

except for a single normal mode coordinate, which has a negative second derivative,

the stationary point is called a first-order saddle point because in two dimensions,

it resembles a saddle that curves up in one direction and curves down in the other

direction (Figure 8-9). This type of saddle point is also called a transition state (TS),

which provides information about the barrier for a chemical reaction. Often a chemi-

cal reaction is assumed to follow the minimum energy path, which is defined to be the

path of steepest descent from the TS down to the two minima. Figure 8-9 depicts the

minimum energy path from a TS down to two minima for a two-dimensional potential

energy surface as a function of the normal mode coordinates at the TS. However, the

character of the normal mode coordinates may change during a chemical reaction,

as illustrated in Figure 8-9. The second derivatives of the energy with respect to the

normal mode coordinates are also associated with the frequencies of the vibrational

normal modes at the stationary points.

So far, we have talked about minimizing the energy to identify stable species. From

the earlier chapters on thermodynamics, however, we learned that stable species actu-

ally correspond to the minimum Gibbs energy, which includes entropic effects. (Note

that the Gibbs energies are implicitly assumed to be standard Gibbs energies in this

context.) Because entropic contributions are often similar for different conformations

of a particular molecule, the errors associated with minimizing the energy rather than

the Gibbs energy are usually negligible. However, the energies at stationary points

can be corrected to include entropic effects using statistical mechanics methods that

will be discussed in Chapter 15. The entropic effects due to the molecular vibra-

tions are calculated from the frequencies of the normal modes using the harmonic

oscillator model, and the entropic effects due to the translations and rotations are cal-

culated using other models. In addition, the energies can be corrected for zero-point

energy effects that were discussed in Chapter 7. The zero-point energy contributions

are typically calculated from the frequencies of the vibrational normal modes using

the harmonic oscillator model. These types of approaches can be used to calculate

thermodynamic quantities with quantum chemistry methods.
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In addition to calculating thermodynamic properties, quantum chemistry can also

be used to investigate the kinetics of chemical reactions. As mentioned earlier, if a

TS is found, then the path of steepest descent can be followed from that TS down to

the minima associated with the reactant and product of the chemical reaction. Sub-

sequently, we can add entropic and zero-point energy contributions to the energies

of the stationary points and calculate the Gibbs energy of activation, which is the

difference in Gibbs energies of the TS and reactant, and the Gibbs energy of reac-

tion, which is the difference in Gibbs energies of the product and reactant. The Gibbs

energy of activation can be used to calculate the rate constant with a method such as

TS theory, which was discussed in Chapter 5. The Gibbs energy of reaction can be

used to calculate the equilibrium constant for the chemical reaction and thereby to

determine the relative populations of the reactant and product species at equilibrium.

Most biological reactions occur in solution, and solvent effects can be very impor-

tant. The effects of solvent can be included in quantum chemistry calculations in

several different ways. A popular approach is to treat the solvent as a dielectric con-

tinuum surrounding the molecule, including the electrostatic interaction between the

molecule and the solvent in the total energy. A disadvantage of this approach is

that it cannot describe specific hydrogen-bonding interactions between solvent and

solute molecules. Another option is to include a small number of solvent molecules

explicitly in the calculation, forming a cluster comprised of the solute and several

solvent molecules. A disadvantage of this approach is that the results can depend

on where these solvent molecules are placed in the initial configuration because the

system can become stuck in local minima. Other approaches that rely on mixing

quantum mechanical methods with classical mechanical methods will be discussed in

Chapter 16.

Many biological systems are too large to be studied with quantum chemistry meth-

ods. In these cases, the full system can be modeled by a smaller portion of the system.

For example, an enzyme reaction may be studied by performing a quantum chemistry

calculation on only the active site. Unfortunately, if the geometry of the active site

of an enzyme is optimized in isolation, the resulting structure could be nonphysical

because the remainder of the enzyme restricts the motion of the active site in a way

that is not easily replicated in the absence of the enzyme. One approach is to constrain

certain atoms in the active site model to positions that are known from experimental

structural studies and optimize only the positions of the remaining atoms. Unfortu-

nately, the results from this approach depend on the choice of which atoms to con-

strain and therefore are somewhat arbitrary. A more reliable and objective approach is

to use a hybrid method in which only the active site is treated quantum mechanically,

but the remainder of the enzyme is still included in a more approximate way. These

types of hybrid approaches will be discussed in Chapter 16.

To illustrate the wide range of information provided by quantum chemistry cal-

culations, we discuss a few select studies of nucleic acid bases and base pairs using

ab initio methods or DFT. We emphasize that the absolute energies obtained with

these types of quantum chemistry methods are not meaningful. Instead, we can only

compare energies for systems comprised of the same atoms calculated at the same

level of theory. For example, such comparisons require the use of the same basis set
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FIGURE 8-10. Low-energy tautomers or isomers of cytosine and the relative gas phase ener-

gies (in kcal/mol) with respect to the canonical keto-amino form calculated with an ab initio
method. Negative energies indicate tautomers more stable than the canonical form, and posi-

tive energies indicate tautomers less stable than the canonical form in the gas phase. Data from

Ref. 4.

and the same density functional within DFT. Thus, chemical and biological applica-

tions of quantum chemistry usually focus on calculating properties such as relative

energies of isomers, interaction energies relative to separated species, or relative

thermochemical properties of a system undergoing a chemical reaction. Structural

information, including bond lengths and angles, can also be obtained from these types

of calculations.

For nucleic acid bases, geometry optimizations with high-level ab initio methods

have been used to determine the structures, dipole moments, and proton affinities of

cytosine, adenine, guanine, thymine, and uracil. These calculations have also pro-

vided information about the relative energies of tautomers due to internal proton

transfers within such nucleic acid bases. For example, the tautomers of cytosine were

determined to have the gas phase energies shown in Figure 8-10. These calculated

energies indicate that all of these tautomers are accessible at room temperature and

therefore agree with experiments showing that all species can coexist in the gas phase.

Solvation was found to strongly influence the relative energies of these tautomers,

stabilizing the canonical keto-amino form over the imino form by ∼7 kcal/mol, also

in agreement with experimental estimates. As a result, the imino tautomer is not

observed often in biomolecules.

The interaction energies of DNA base pairs have also been calculated with quan-

tum chemistry methods. These interaction energies are defined to be the difference

between the energy of the base pair and the energies of the isolated bases. The accu-

rate description of these types of interaction energies requires high-level ab initio
methods that go beyond Hartree–Fock theory. These types of ab initio methods indi-

cate that the interaction energy is almost twice as large for the guanine–cytosine (GC)

Watson–Crick base pair than for the adenine–thymine (AT) Watson–Crick base pair,

as depicted in Figure 8-11. The calculations suggest two reasons for the stronger inter-

action energy of the GC base pair. The first reason is the different number of hydrogen

bonds in the two base pairs, with three hydrogen bonds in the GC pair and only two

hydrogen bonds in the AC pair. The second reason is the stronger polarity of guanine

and cytosine compared to thymine and adenine, as indicated by the calculated dipole

moments of the individual bases. The aromatic base stacking interactions, as well as

the interactions of metal cations with bases and base pairs, have also been investigated

with quantum chemistry methods. Overall, these types of calculations have provided

insights about fundamental interactions in nucleic acids.
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FIGURE 8-11. Hydrogen-bonded GC and AT Watson-Crick base pairs and interaction ener-

gies (kcal/mol) calculated with an ab initio method. Negative interaction energies indicate that

the base pair is more stable than the separated bases, and the lower energy for GC than for AT

indicates a stronger interaction energy for GC. Data from Ref. 4.
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FIGURE 8-12. Schematic depiction of the proton transfer reaction in the GC radical cation

base pair.

To illustrate a chemical reaction, we focus on proton transfer in the GC radical

cation base pair. Upon one-electron oxidation of guanine in a GC base pair, experi-

ments suggest that a proton is transferred from N1 of the guanine radical cation to N3

of the cytosine. This reaction, which is depicted in Figure 8-12, was studied with DFT

in the gas phase and in the presence of eleven explicit water molecules. In both cases,

the reactant and product minima corresponding to the proton on the N1 of G or the N3

of C, respectively, and the TS corresponding to the proton midway between the N1

of G and the N3 of C were found. The zero-point energy and entropic contributions

were calculated to generate the Gibbs energies for this reaction. A one-dimensional

representation of the Gibbs energy surface for the proton transfer reaction in the sol-

vated system is depicted in Figure 8-13. In the gas phase, the proton transfer reaction

is not thermodynamically favored, and the Gibbs energy of reaction is 1.38 kcal/mol.

In the presence of 11 water molecules, however, the proton transfer is thermody-

namically favored, and the Gibbs energy of reaction is −0.65 kcal/mol, as shown in

Figure 8-13. Moreover, the Gibbs energy of activation for this reaction was deter-

mined to be 1.70 kcal/mol, which is easily surmountable at room temperature. Thus,

the water molecules stabilize the product state, and the calculations are in agreement

with the experimental observation of facile proton transfer upon oxidation.
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FIGURE 8-13. One-dimensional representation of the Gibbs energy surface for proton trans-

fer in the GC radical cation base pair solvated by 11 water molecules. The Gibbs energies of

the minima and TS were calculated with DFT including zero-point energy and entropic con-

tributions. In the reactant minimum, the proton is on N1 of G, and in the product minimum,

the proton is on N3 of C. At the TS, the proton is midway between N1 of G and N3 of C. Data

from Ref. 5.

These examples illustrate that quantum chemistry calculations can provide useful

structural, energetic, thermodynamic, and kinetic information about biological sys-

tems. As mentioned earlier, however, most biological systems are too large for a fully

quantum mechanical treatment at a high level of theory. Therefore, a variety of hybrid

methods that combine quantum mechanical methods with more approximate meth-

ods have been developed. In addition, conformational sampling is important for large

biomolecules and is not easily included with high-level quantum chemistry methods.

In particular, simple geometry optimizations will find only a very small fraction of the

large number of minima and TSs on the multidimensional potential energy surfaces

of biological molecules. These important issues will be discussed in more detail in

Chapter 16.
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PROBLEMS

8-1. Consider hydrogenic atoms, which contain one nucleus and one electron.

a. What is the energy required to excite an electron from the n = 1 to the n= 3

energy level of a hydrogen atom?

b. What is the energy required to ionize the hydrogen atom?

c. How many angular and radial nodes do the 3s, 3p, and 3d orbitals have?

d. What is the degeneracy of the n = 3 energy level?

e. What is the energy required to ionize the He+ atom?

8-2. The bond order of a diatomic molecule is defined as B = (Nb − Na)/2, where Nb

is the number of electrons in bonding orbitals and Na is the number of electrons

in antibonding orbitals. The greater the bond order, the shorter the bond length

and the greater the bond strength.

a. By analyzing the MO diagram, arrange the diatomic molecules O2
+, O2,

O2
−, and O2

2− in order of decreasing bond length.

b. How many unpaired electrons (i.e., singly-occupied MOs) does each

molecule have?

c. According to Hund’s rule, are the spins of the unpaired electrons parallel or

antiparallel?

8-3. The trihydrogen cation, H3
+, has been detected in the interstellar medium and is

thought to be one of the most abundant ions in the universe. At the equilibrium

geometry, the three hydrogen atoms are arranged in an equilateral triangle with

sides 0.90 Angstroms. Here we will use MO theory to study this two-electron

molecule with basis functions 1sA, 1sB, and 1sC, where each basis function is

centered on one of the hydrogen nuclei.

a. Using symmetry arguments, write the form of the lowest energy MO, 𝜓1(r),
for this system. The two electrons will occupy this MO.

b. The total potential energy experienced by the nuclei is the sum of the elec-

tronic energy and the nuclear–nuclear repulsion interactions, as given in Eq.

(8-9). If the Coulombic interaction between two protons separated by 1.00

Angstrom is 332 kcal/mol, what is the value of the total nuclear–nuclear

interaction term in kcal/mol?

c. Will the nuclear–nuclear interaction term increase or decrease as the length

of the sides of the equilateral triangle increases? Given this trend, do you

expect the electronic energy to increase or decrease as the length of the sides

of the equilateral triangle become longer than the value at the equilibrium

geometry? Hint: Use the variation principle to answer the second part of this

question.

8-4. The peptide backbone of a protein is comprised of the following basic structural

unit:
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Cα1

C

O

N

H

Cα2

These six atoms lie in a plane, and this planarity plays an important role in

determining the three-dimensional structures of proteins. This planarity can be

understood in terms of MO theory. In this problem, we consider only the valence

electrons for each atom. In other words, we do not consider the two electrons

occupying the 1s atomic orbitals for the C, N, and O atoms. The central C atom

and the N and O atoms are sp2 hybridized, meaning that the 2s, 2px, and 2py
atomic orbitals for each atom mix together to form three equivalent sp2 atomic

orbitals. The sp2 atomic orbitals are used to form 𝜎 MOs, while the 2pz atomic

orbitals are used to form 𝜋 MOs.

a. Using symmetry arguments for the sp2 atomic orbitals, what are the bond

angles between adjacent bonds? Specifically, what are the O-C-N, C-N-H,

O-C-C
𝛼1, and C-N-C

𝛼2 angles?

b. How many valence electrons from each of these six atoms participate in 𝜎

MOs?

c. How many valence electrons from each of these six atoms participate in 𝜋

MOs?

d. How many 𝜋 MOs are formed from the three 2pz atomic orbitals?

e. Assuming that all of the electrons are paired, how many of these 𝜋 MOs are

occupied in this structural unit?

8-5. Three stationary points were identified for the proton transfer reaction in the

oxidized guanine-cytosine base pair in the presence of 11 H2O molecules, as

depicted in Figure 8-13. The Gibbs energies for these three states are given in

the following table with the reactant state set to zero. The values given in this

table include zero-point energy and entropic contributions at 298 K.

State Gibbs energy (kcal/mol)

Reactant: G+-H –C 0

Product: G–H-C+ −0.65

TS: G–H+–C 1.70

a. Is the reactant or the product thermodynamically favored?

b. Calculate the equilibrium constant for this reaction at 298 K.

c. Is the rate constant larger in the forward or reverse direction?

d. Using transition state theory, calculate the rate constant for this reaction at

298 K.
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CHAPTER 9

X-ray Crystallography

9.1 INTRODUCTION

The primary tool for determining the atomic structure of macromolecules is the

scattering of X-ray radiation by crystals. Strictly speaking, this is not considered

spectroscopy even though it involves the interaction of radiation with matter.

Nevertheless, the importance of this tool in modern biology makes it mandatory to

have some understanding of how macromolecular structures are determined with

X-ray radiation. The basic principles of the methodology will be discussed without

delving into the details of how structures are determined. We then consider some

of the important results that have been obtained as well as how they can be used to

understand the function of macromolecules in biological systems.

Although considerable progress has been made in determining the structures of

macromolecules that are not strictly crystalline, we will concentrate on the structure

of macromolecules from high-quality crystals. High-quality crystals have molecules

arranged in a regular array, and this regular array, or lattice, serves as a scattering

surface for X-rays.

Why are X-rays used to determine molecular structures? Ordinary objects can be

easily seen with visible light, and very small objects can be seen in microscopes with

a high-quality lens that converts the electromagnetic waves associated with light into

an image. However, the resolution of a light microscope is limited by the wavelength

of light that is used. Distances cannot be resolved that are significantly shorter than

the wavelength of the light that illuminates the object. The wavelength of visible light

is thousands of angstroms, whereas distances within molecules are approximately

angstroms.

The obvious answer to this resolution problem is to use radiation that has a much

shorter wavelength than visible light, namely X-rays, which have wavelengths in the

angstrom region. In principle, all that is needed is a lens that will convert the scat-

tering from a molecule into an image. What does this entail? We have previously

shown that light has an amplitude and a periodicity with respect to time and distance,

or a phase. A lens takes both the amplitude and phase information and converts it

into an image. Unfortunately, a lens does not exist that will carry out this function
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for X-ray radiation. Instead, what can be measured is the amplitude of the scattered

radiation. Methods are then needed to obtain the phase and ultimately the molecular

structure. The principles behind this methodology are given below, without presenting

the underlying mathematical complications. More advanced texts should be consulted

for the mathematical details (1,2).

9.2 SCATTERING OF X-RAYS BY A CRYSTAL

X-rays are produced by bombarding a target (typically a metal) with high-energy

electrons. If the energy of the incoming electron is sufficiently large, it will eject an

electron from an inner orbital of the target. A photon is emitted when an outer orbit

electron moves into the vacated inner orbital. For typical targets, the wavelengths

of the photons are tenths of angstrom to several angstroms. In a normal laboratory

experiment, X-rays are produced by special electronic tubes. However, more intense

short-wavelength sources can be obtained using high-energy electron accelerators

(synchrotrons), and these sources are often used to obtain high-resolution structures.

The intensity of X-rays from a synchrotron is thousands of times greater than a con-

ventional source, and radiation of different wavelengths can be selected. Smaller

crystals can be used for structure determinations with synchrotron radiation than with

conventional sources, which is a considerable advantage.

Crystals can be considered as a regular array of molecules, or scattering elements.

Only seven symmetry arrangements of crystals are possible. For example, one possi-

bility is a simple cube. In this case, the three axes are equal in length and are 90∘ with

respect to each other. Other lattices can be generated by having angles other than 90∘
and unequal sides of the geometric figure. A summary of the seven crystal systems is

given in Table 9-1.

The crystal type does not give a complete picture of the possible arrangements of

atoms within the crystal, that is, the lattice. The lattice is an infinite array of points

(atoms) in space. A. Bravais showed that all lattices fall within 14 types, the Bravais
lattices. For example, for a cubic crystal, three lattices are possible: one with an atom

at each corner of the cube, one with an additional atom at the center of the cube

(body-centered cube), and one with an additional atom in the center of each face of

TABLE 9-1. The Seven Crystal Systems

System Axes Angles

Cubic a = b = c 𝛼 = 𝛽 = 𝛾 = 90∘
Rhombohedral a = b = c 𝛼 = 𝛽 = 𝛾

Tetragonal a = b; c 𝛼 = 𝛽 = 𝛾 = 90∘
Hexagonal a = b; c 𝛼 = 𝛽 = 90∘; 𝛾 = 120∘
Orthorhombic a; b; c 𝛼 = 𝛽 = 𝛾 = 90∘
Monoclinic a; b; c 𝛼 = 𝛾 = 90∘; 𝛽
Triclinic a; b; c 𝛼; 𝛽; 𝛾



9.2 SCATTERING OF X-RAYS BY A CRYSTAL 207

d

Incident
radiation

A
B

C

Diffracted
radiation

θ θ

θ θ

FIGURE 9-1. Diffraction of X-ray radiation by a crystal lattice. The parallel lines are planes

of atoms separated by a distance, d, and the radiation impinges on the crystal at an angle 𝜃.

This diagram can be used to derive the Bragg condition for maximum constructive interference

as described in the text (Eq. (9-1)).

the cube (face-centered cube). Determination of crystal type and lattice classification

is important for the subsequent analysis of the X-ray scattering data.

W. L. Bragg showed that the scattering of X-rays from a crystal can be described

as the scattering from parallel planes of molecules, as illustrated in Figure 9-1. If the

incident beam of X-rays is at an angle 𝜃 with respect to the molecular plane, then it

will be scattered at an angle 𝜃. This is called elastic scattering and assumes that the

radiation does not lose or absorb energy in the scattering process. In reality, some

inelastic scattering occurs in which energy can be gained or lost, but this effect can

be neglected. From Figure 9-1, it is clear that scattering will occur for each plane and

scattering center with the same incident and exit angle. From a wave standpoint, the

radiation will be scattered from each plane, and the radiation from each plane will

have a different phase as it exits, since each wave would have traveled a different

distance depending on the depth of the plane in Figure 9-1. However, if the wave-

length of radiation is such that the difference in path length traveled by the beams

from different planes is equal to the wavelength or an integer multiple of the wave-

length, then the two waves will be in phase and constructive interference will occur,

that is, the intensity of the radiation will be at a maximum. The phenomena of con-

structive and destructive interference have been discussed in Chapter 7. Figure 7-11

illustrates these phenomena when the time dependence of an electromagnetic wave

is considered. The same analysis is applicable for the propagation of a wave in space

(Fig. 7-11 and Eq. (7-20)) as illustrated in Figure 9-2.

The condition for maximum constructive interference can be calculated by refer-

ence to Figure 9-1:

AB + BC = n𝜆

where n is an integer and 𝜆 is the wavelength. The distances AB and BC are equal to

d sin 𝜃, where d is the distance between planes. Thus, the Bragg equation is

n𝜆 = 2d sin 𝜃 (9-1)
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FIGURE 9-2. Illustration of constructive and destructive interference. This figure is identical

to Figure 7-11, except that now the abscissa is distance rather than time. The upper two waves

are in phase, which means that they differ by integral multiples of the wavelength, 𝜆, and

constructive interference occurs. The bottom two waves differ by 𝜆/2 in phase, and destructive

interference occurs.

The Bragg equation gives the condition for diffraction so that if a crystal is rotated

in a beam of X-rays, the scattering pattern is a series of intensity maxima. A real

crystal is more complex than a set of parallel planes of point-scattering sources. In

fact, multiple planes exist, and a molecule is not a simple point scatterer. Electrons

in atoms are the scatterers, and each atom has a different effectiveness as a scat-

terer. Consequently, when an experiment is carried out, a set of diffraction maxima

of different intensities is observed. A schematic representation of the experimental

setup is shown in Figure 9-3. Either the crystal or detector, or both are rotated to

obtain the scattering intensity at various angles. The diffraction pattern has a strong

peak at the center, the unscattered beam, and a radial distribution around the center,

corresponding to different planes and values of n in Eq. (9-1).

The Bragg equation can be used to derive the minimum spacing of planes that can

be resolved for X-rays of a given wavelength. Since the maximum value of sin 𝜃 is

1, dmin = 𝜆/2.

9.3 STRUCTURE DETERMINATION

The analysis of a diffraction pattern is considerably more difficult than suggested ear-

lier. The scattering intensity depends on the scattering effectiveness of the individual
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FIGURE 9-3. Experimental setup for measuring X-ray diffraction from crystals. The crystal

can be rotated around both perpendicular axes, and the diffraction pattern is measured on an

area detector or film. The incident X-ray radiation is prevented from hitting the area detector

by insertion of a beam blocker between the crystal and the detector.

atoms and the phase of the wave from each scattering source. The structure factor, F,

for each plane can be defined as the sum of the structure factors for individual atoms,

fi, times a phase factor, 𝛼i, for each atom:

F =
∑

i

fi𝛼i (9-2)

The intensity of scattered radiation is proportional to the absolute value of the

amplitude of the structure factor. The structure factor can be calculated if the atomic

coordinates are known. Note that Eq. (9-2) is analogous to the general description of

electromagnetic waves developed in Chapter 7, namely, an amplitude is multiplied

by an angular dependence (sin and/or cos).

In proceeding to determination of the structure, it should be remembered that

X-rays are scattered by electrons in atoms so that representing a crystal as a series

of point atoms is not a good picture of the real situation. Instead, a more realistic
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formulation is to represent the structure factor as an integral over a continuous distri-

bution of electron density. The electron density is a function of the coordinates of the

scattering centers, the atoms, and has a maximum around the position of each atom.

What is desired in practice is to convert the measured structure factors into atomic

coordinates. This is done by taking the Fourier transform of Eq. (9-2). In this case, the

Fourier transform takes the structure factors, which are functions of the electron den-

sity, and inverts the functional dependence so that the electron density is expressed

as a function of the structure factors. (This is analogous to the discussion in Chapter

7 in which the frequency and time dependences are interchanged by Fourier trans-

forms.) This seems straightforward from the standpoint of the mathematics, but the

problem is that the actual structure factors contain both amplitudes and phases. Only

the amplitude, or to be more precise, its square, can be directly derived from the mea-

sured intensity of the diffracted beam. The phase factor must be determined before a

structure can be calculated.

Two methods are commonly used to solve the phase problem for macromolecules.

One of these is Multiple-wavelength Anomalous Dispersion or MAD. Thus far,

we have discussed X-ray scattering in terms of coherent scattering where the

frequency of the radiation is different than the frequency of oscillation of electrons

in the atoms. However, X-ray frequencies are available that match the frequency of

oscillation of the electrons in some atoms, giving rise to anomalous scattering that

can be readily discerned from the wavelength dependence of the scattering. The

feasibility of this approach is made possible by the use of synchrotron radiation since

crystal monochromators can be used to obtain high-intensity X-rays at a variety of

wavelengths. Anomalous scattering is usually observed with relatively heavy atoms

(e.g., metals or iodine) that can be inserted into the macromolecular structure. The

observation of anomalous scattering for specific atoms allows these atoms to be

located in the structure, thus providing the phase information that is required to

obtain the complete structure.

Another frequently used method for determining phases in macromolecules is

isomorphous replacement. With this method, a few heavy atoms are put into the

structure, for example, metal ions. Since scattering is proportional to the square of

the atomic number, the enhanced scattering due to the heavy atoms can be easily

seen, and the positions of the heavy atoms determined. This is done by looking at the

difference in structure factors between the native structure and its heavy atom deriva-

tive. Of course, it is essential that the isomorphous replacement not significantly alter

the structure of the molecule being studied. We will not delve into the details of the

methodology here.

Thus far, the assumption has been made that the X-ray radiation is monochro-

matic. An alternative is to use a broad spectrum of radiation (“white” radiation). The

premise is that whatever the orientation of the crystal, one of the wavelengths would

satisfy the Bragg condition. In fact, this was the basis for the first X-ray diffraction

experiments carried out by Max von Laue in 1912, and this approach is called Laue

diffraction. As might be expected, Laue diffraction patterns can be very complex and

difficult to interpret as diffraction patterns from multiple wavelengths are observed

simultaneously. The advantage is that a large amount of structural information can be
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FIGURE 9-4. Laue diffraction pattern obtained with synchrotron radiation and an area detec-

tor. The protein crystal is DNA polymerase from Bacillus stearothermophilus. Copyright by

Professor L. S. Beese, Duke University. Reproduced with permission.

obtained in a very short time. A Laue diffraction pattern of DNA polymerase from

Bacillus stearothermophilus obtained with an area detector and synchrotron radiation

is shown in Figure 9-4. Although most structural determinations use monochromatic

radiation, the use of Laue diffraction has increased significantly in recent years.

What limits the precision of a structure determination? Real crystals are not infinite

arrays of planes. They have imperfections so that the diffraction pattern is strong

near the center and becomes weaker radially from the center, as the reflections from

planes closer together become important. The precision of the distances in the final

structure is limited by how many reflections are observed. The better the order in the

crystal, the further from the center of the diffraction pattern that reflections can be

seen. This problem can only be cured by obtaining better crystals. A minor problem

is that atoms have thermal motion, so that an inherent uncertainty in the position

exists. This can be helped by working at low temperatures, which sometimes will

lock otherwise mobile structures into one conformation. Finally, it should be noted

that in some cases, portions of the macromolecule may not be well defined because

of intrinsic disorder, that is, more than one arrangement of the atoms occurs in the

crystals.

The spatial resolution of a structure is usually given in terms of the distances that

can be distinguished in the diffraction pattern. For good structures, this is typically

2 Å or better. However, this is not the uncertainty in the positions of atoms within the
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structure. In solving the structure of a macromolecule, other information is used from

known structures of small molecules, for example, bond distances (C—C, etc.) and

bond angles. For high-quality structures, the uncertainty in atomic positions is tenths

of angstroms.

At the present time, the primary difficulty in determining the molecular structures

of proteins and nucleic acids is obtaining good crystals, that is, crystals that give good

diffraction patterns. If good diffraction patterns can be obtained, including isomor-

phous replacements or anomalous scattering atoms, computer programs are available

to help derive the structure. However, as structures become larger and larger, both

obtaining good crystals and the data analysis itself are a challenge.

Crystal structures represent a static picture of the equilibrium structure so that the

correlation with biological function must be approached with caution. Furthermore,

the packing of molecules within a crystal can alter the structure relative to that in

solution. This is usually true only for atoms on the surface of the molecule so that the

core structures, such as active sites, are normally an accurate reflection of the bio-

logically active species. Recent applications of synchrotron radiation have permitted

the time evolution of structures to be studied using Laue diffraction (3,4). Although

such experiments are exceedingly difficult to carry out and interpret, in principle it is

possible to observe the structure of biological molecules as they function.

9.4 NEUTRON DIFFRACTION

High-velocity thermal neutrons are generated by atomic reactors. If they are slowed

down by collisions, typically with D2O, then their energy corresponds to a wavelength

of about 1 Å. The scattering of neutrons by atoms is quite different than the scattering

of X-rays. In the latter case, the scattering is by electrons, whereas in the former case,

the scattering is by the nuclei. Moreover, the scattering of neutrons is not easily related

to atomic number.

A major difference between neutron and X-ray scattering is that hydrogen is a very

effective scattering center for neutrons, but is relatively ineffective for X-rays. Conse-

quently, the positions of hydrogen atoms are difficult to obtain from X-ray scattering

but can be readily found through neutron scattering. D2O scatters quite differently

than H2O: their scattering factors have opposite signs, that is, they are out of phase

with respect to each other. The scattering factors for proteins and nucleic acids usually

fall somewhere in between so that mixtures of D2O and H2O can be used as “contrast”

agents. Appropriate mixtures can be used to effectively make certain macromolecules

“invisible” to neutron scattering. For example, if a protein-nucleic acid interaction

is being studied, the appropriate solvent mixture can make either the protein or the

nucleic acid “invisible.” Historically, this property was important for mapping the

structure of the ribosome.

Neutron scattering studies are relatively rare because high-flux neutron sources are

small in number. Nevertheless, neutron diffraction can be a useful tool in elucidating

macromolecular structure.
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9.5 NUCLEIC ACID STRUCTURE

Probably the most exciting structure determination of a biological molecule was

that for B-DNA deduced by James Watson and Francis Crick. This structure was,

in fact, based on diffraction patterns from fibers rather than crystals. The familiar

right-handed double helix is shown in Figure 3-9. Thermodynamic aspects of

this structure have been previously discussed in Chapter 3. In this structure, two

polynucleotide chains with opposite orientations coil around an axis to form the

double helix. The purine and pyrimidine bases from different chains hydrogen

bond in the interior of the double helix, with adenine (A) hydrogen bonding to

thymine (T) and guanine (G) hydrogen bonding to cytosine (C). The former pair

has two hydrogen bonds and the latter has three hydrogen bonds. Hence, the G–C

pair is significantly more stable than the A–T pair. Phosphate and deoxyribose are

on the outside of the double helix and interact favorably with water. The double

helical structure contains two obvious grooves, the major and minor grooves.

The major groove is wider and deeper than the minor groove. These grooves

arise because the glycosidic bonds of a base pair are not exactly opposite to each

other.

We will not dwell on the biological function of DNA except to note that DNA must

separate during the replication process, and the stability of various DNAs depends

on the base composition of the DNA. At sufficiently high temperatures, all DNA

structures are destroyed and the two polynucleotide chains separate.

Extensive X-ray studies have shown that other forms of helical DNA exist. If the

relative humidity is reduced below about 75%, A-DNA forms. It is also a right-handed

double helix of antiparallel strands, but a puckering of the sugar rings causes the

bases to be tilted away from the normal of the axis. A-DNA is shorter and wider than

B-DNA. This structure is found in biology for some double-stranded regions of RNA

and in RNA–DNA hybrids.

A third type of DNA has been found, which is a left-handed helix, Z-DNA. Z-DNA

is elongated relative to B-DNA and has more unfavorable electrostatic interactions.

This structure has been observed with specific short oligonucleotides at high salt con-

centrations. The biological significance of this structure is not clear, but its occurrence

demonstrates that quite different structures can exist for DNA.

RNA has more diverse structures than DNA, in keeping with its diverse biological

functions that include its role as messenger RNA (mRNA) during transcription, as

transfer RNA (tRNA) in protein synthesis and as ribozymes in catalysis. In addition,

RNA is found in ribosomes and other ribonucleic proteins. Typically, RNA does not

form a double helix from two separate chains, as DNA does. However, the same base

pairing rules as found for DNA cause internal helices to be formed within an RNA

molecule. In fact, the structures of many RNA molecules are inferred in this way. In

RNA, uracil (U) is found rather than thymine, as in DNA.

The first structure of an RNA deduced by X-ray crystallography was that of

yeast phenylalanine tRNA (5). This structure is shown in Figure 9-5. The L-shaped

molecule is typical of tRNAs. The hydrogen bonding network is shown in this

structure. The acceptor stem (upper right-hand corner) is where the amino acid is
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FIGURE 9-5. Structure of yeast phenylalanine tRNA with the backbone in cyan (Protein Data

Bank entry 1EHZ). The L-shaped structure can be seen and the hydrogen bonding of the side

chains to form helical structures. The anticodon loop is at the bottom of the long arm of the L.

Copyright by Professor David C. Richardson. Reprinted with permission. Kinemage graphics,

then rendered in Raster3D.

linked to form the aminoacyl-tRNA. The amino acid is transferred to the growing

protein chain during protein synthesis. The anticodon, which specifies the amino

acid to be added to a protein during synthesis, is at the end of the long arm

of the L. It pairs with a specific mRNA that is the genetic information for the

amino acid. The structures of many other tRNAs are now known and are quite

similar.

For many years, a central dogma of biochemistry was that all physiological reac-

tions are catalyzed by enzymes that are proteins. However, now many reactions are

known that are catalyzed by RNA, as previously discussed in Chapter 6. In brief,

these catalytic RNAs (ribozymes) are particularly important in splicing and matu-

ration of RNA. In some cases, the ribozyme cleaves other RNA, whereas in other
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FIGURE 9-6. Secondary and tertiary structures of the hammerhead ribozyme. The capital

letters refer to the bases of the nucleic acids, and the lines show hydrogen bonding interactions

between the bases. The cleavage site is indicated by the arrow. Reprinted with permission

from D. A. Doherty and J. A. Doudna, Annu. Rev. Biochem. 69, 597 (2000). © 2000 by Annual

Reviews, www.annualreviews.org.

cases it undergoes self-cleavage. Ribosomal RNA also plays a catalytic role in the

formation of peptide bonds. Although there is little doubt that RNA functions as a

catalyst physiologically, they are not as efficient as enzymes. In some cases, such

as self-cleavage, the reaction is not truly catalytic as multiple turnovers cannot occur.

Many ribozymes require a protein to function efficiently, and even in cases where true

catalysis occurs, it is slow relative to typical enzymatic reactions. Kinetic aspects of

ribonuclease P, a ribozyme important for the maturation of tRNA, were considered

in Chapter 6.

The structures of several ribozymes have been determined (6). The first structure

that was determined was that of “hammerhead” ribozyme (7). This ribozyme was

first discovered as a self-cleaving RNA associated with plant viruses. The minimal

structure necessary for catalysis contains three short helices and a universally con-

served junction. The structure is shown in Figure 9-6, along with an indication of the

cleavage site in the RNA chain. The three helices form a Y-shaped structure, with

helices II and III essentially in line and helix I at a sharp angle to helix II. Distor-

tions at the junction of the helices cause C17 to stack with helix I. This structure is

somewhat misleading because multiple divalent metal ions are required in order for

the RNA to fold and carry out catalysis. At least one of these metal ions is intimately

involved in the catalytic process. The precise number of metal ions that are required

for folding and/or catalysis is uncertain. Moreover, the two structures that have been

determined are necessarily noncleavable variants: one has a DNA substrate strand and

the other a 2′-O-methyl group at the cleavage site. The two structures are not identi-

cal and not entirely consistent with mutagenesis studies that place specific groups at

the active catalytic site. This is undoubtedly a reflection of the flexibility of the struc-

ture. Nevertheless, knowledge of ribozyme structure is a requisite for understanding

their mechanisms of action and for engineering ribozymes for enhanced catalysis and

function.

http://www.annualreviews.org
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9.6 PROTEIN STRUCTURE

Hundreds of protein structures are known, with a great deal of variation, as well as

similarities, among them. Some of the thermodynamic aspects of protein structure as

well as some of the basic structures have been discussed in Chapter 3. In this section,

we again return to the common motifs, as well as a few specific examples. Fortunately,

the coordinates for protein structures can be found in a single database, the Protein

Data Bank, which can be accessed via the Internet. Free software is also available

on the Internet for viewing and manipulating structures with known coordinates, for

example, Kinemage (8) and RasMol (9). This software can also be used for nucleic

acid structures. Interested readers should explore this software and database, as their

use is very important for understanding biological mechanisms on a molecular basis.

The linear sequence in which amino acids are arranged in a protein is termed the

primary structure. The two most common long-range ordered structures in proteins

are the 𝛼-helix and the 𝛽-sheet. Ordered structures within a protein are called sec-
ondary structures. Both structures are stabilized by hydrogen bonds between the NH

and CO groups of the main polypeptide chain. In the case of the 𝛼-helix, depicted

in Figure 3-4, a coiled rod-like structure is stabilized by hydrogen bonds between

residues that are four amino acids apart. In principle, the screw sense of the helix

can be right handed or left handed. However, the right-handed helices are much

more stable because they avoid steric hindrance between the side chains and back-

bone. Helices with a different pitch, that is, stabilized by hydrogen bonding between

residues other than those that are four amino acids apart are found, but the 𝛼-helix is

the most common helical element found. The helical content of proteins ranges from

almost 100% to very little. Helices are seldom more than about 50 Å long, but mul-

tiple helices can intertwine to give extended structures over 1000 Å long. A specific

example is the interaction of myosin and tropomyosin in muscle.

Beta sheets are also stabilized by NH—CO hydrogen bonds, but in this case

the hydrogen bonds are between adjacent chains, as depicted in Figure 3-5. The

chains can be either in the same direction (parallel 𝛽-sheets) or in opposite directions

(antiparallel 𝛽-sheets). These sheets can be relatively flat or twisted in protein

structures. In schematic diagrams of proteins, 𝛼-helices are often represented as

coiled ribbons and 𝛽-sheets as broad arrows pointing in the direction of the carboxyl

terminus of the polypeptide chain 10).

Most proteins are compact globular structures, consisting of collections of

𝛼-helices and 𝛽-sheets. Obviously, if the structure is to be compact, it is necessary

for the polypeptide chain to reverse itself. Many of these reversals are accomplished

with a common structural element, a reverse turn or 𝛽-hairpin bend, that alters the

hydrogen bonding pattern. In other cases, a more elaborate loop structure is used.

These loops can be quite large. Although they do not have regular periodic struc-

tures, analogous to 𝛼-helices and 𝛽-sheets, they are still very rigid and well-defined

structures.

The first protein whose structure was determined by X-ray crystallography to

atomic resolution was myoglobin (11). Myoglobin serves as the oxygen transporter in

muscle. In addition to the protein, it contains a heme, a protoporphyrin with a tightly
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FIGURE 9-7. Ribbon structure of sperm whale myoglobin (Protein Data Bank entry 1A6M).

The large amount of 𝛼-helical structure is apparent. The space filling structure in cyan is the

heme. Copyright by Professor David C. Richardson. Reprinted with permission. Kinemage

graphics, then rendered in Raster3D.

bound iron. The iron is the locus where oxygen is bound. Myoglobin was a particu-

larly fortuitous choice for structure determination. Of course, good crystals could be

obtained. In addition, myoglobin is very compact and primarily consists of 𝛼-helices.

Its structure is shown in Figure 9-7. The 𝛼-helices form a relatively compact electron

density so that the polypeptide could be easily traced at low resolution. The structure

has several turns that are necessary to maintain the compact structure. Overall, the

myoglobin molecule is contained within a rectangular box roughly 45 × 35 × 25 Å3.

The overall trajectory of the polypeptide chain (that is, the folding of the secondary

structure) is called the tertiary structure.

For water-soluble proteins, including myoglobin, the interior is primarily

hydrophobic or nonpolar amino acids such as leucine, pheylalanine, etc. Amino

acids that have ionizable groups, such as glutamic acid, lysine, etc., are normally

on the exterior of the protein. If a protein exists in a membrane, a hydrophobic

environment, the situation is often reversed, with hydrophilic residues on the

inside and nonpolar residues on the outside. In some cases, however, the structure is
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FIGURE 9-8. Schematic structure of ribonuclease A with uridine vanadate (magenta) bound

to the active site (Protein Data Bank entry 1RUV). Both 𝛼-helical and 𝛽-sheet structure can be

seen, as well as structure that does not have a regular array of hydrogen bonds. The disulfide

linkages are in yellow, and the green residues are histidines 12 and 119, which are essential

for catalytic activity. Copyright by Professor David C. Richardson. Reprinted with permission.

Kinemage graphics, then rendered in Raster3D.

hydrophobic on both the “inside” and the “outside.” Understanding how polypeptides

fold into their native structures is an important subject under intense investigation.

In an ideal world, the structure of a protein should be completely predictable from

knowledge of its primary structure, that is, its amino acid sequence. However, we

have not yet reached this goal.

As a second example of a protein structure, the structure of ribonuclease A is

depicted in Figure 9-8 (12). This protein is quite compact and contains both 𝛼-helix

and 𝛽-sheet modules with significant loops and connecting structures. In addition,

four disulfide linkages are present. This enzyme is kidney shaped with the catalytic

site tucked into the center of the kidney. The active site is shown by the placement

of an inhibitor and two histidine residues that participate in the catalytic reaction.

This structure proved much more elusive than myoglobin because a larger variety of

structural elements are present.

Not all proteins are as compact as myoglobin and ribonuclease. In some cases, a

single polypeptide chain may fold into two or more separate structural domains that

are linked to each other, and many proteins exist as oligomers of polypeptide chains

in their biologically active form. The arrangement of oligomers within a protein is

called the quaternary structure. The first well-studied example of the latter struc-

ture was hemoglobin. Hemoglobin is a tetramer of polypeptide chains. Two different
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types of polypeptides are present: they are very similar but not identical. The typical

structure of hemoglobin is 𝛼2𝛽2, with 𝛼 and 𝛽 designating the two types of quite sim-

ilar polypeptide chains. Hemoglobin, of course, is used to transport oxygen in blood.

In a sense, it is four myoglobins in a single molecule. Four porphyrins and irons

are present, and each complex is associated with a single polypeptide chain. How-

ever, the interactions between the polypeptide chains are extremely important in the

function of hemoglobin and influence how oxygen is released and taken up. In brief,

the uptake and release are highly cooperative so that they occur over a very narrow

range of oxygen concentration (cf. Ref. 13). This aspect of hemoglobin is discussed in

Chapter 17.

Hemoglobin is known to exist in two distinct conformations that differ primarily

in the subunit interactions and the details of the porphyrin binding site. The structures

of both conformations of hemoglobin are shown in Figure 9-9. One of the conforma-

tions binds oxygen much better than the other, and it is the switching between these

conformations that is primarily responsible for the cooperative uptake and release of

oxygen. A complete discussion of hemoglobin structure is beyond the scope of this

presentation, which is focused on illustrating some of the major features of protein

structures.

9.7 ENZYME CATALYSIS

As a final illustration of the application of X-ray crystallography to biology, we con-

sider the enzyme DNA polymerase. Elucidating the mechanism by which enzymes

catalyze physiological reactions has been a long-standing goal of biochemistry. X-ray

crystallography has been used to probe many enzyme mechanisms. The choice of

DNA polymerase is arbitrary, but it is clearly an enzyme at the core of biology and

requires the knowledge of both protein and nucleic acid structures. DNA polymerase

is the enzyme responsible for replication of new DNA. The reaction proceeds by

adding one nucleotide at a time to a growing polynucleotide chain. This addition can

only occur in the presence of a DNA template that directs which nucleotide is to be

added by forming the correct hydrogen bonds between the incoming nucleotide and

the template.

The molecular structures of a wide variety of DNA polymerases are known (cf.

Ref. 14). The general structure of the catalytic site is similar in all cases and has

been described as a right hand with three domains, fingers, a thumb, and a palm.

The structure of a catalytic fragment of the thermostable Bacillus stearothermophilus
enzyme is shown in Figure 9-10 (15,16). The fingers and thumb wrap around the DNA

and hold it in position for the catalytic reaction that occurs in the palm. To initiate the

reactions, a primer DNA strand is required which has a free 3′-hydroxyl group on a

nucleotide already paired to the template. The enzyme was crystallized with primer

templates, which are included in Figure 9-10. The reaction occurs via a nucleophilic

attack of this hydroxyl group on the 𝛼-phosphate of the incoming nucleotide, assisted

by protein side chains on the protein and two metal ions, usually Mg2+. We will not

be concerned with the details of the chemical reaction.
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FIGURE 9-9. Schematic representation of the R (bottom, pink) and T (top, blue) forms of the

hemoglobin 𝛼2𝛽2 tetramer. The hemes where the oxygen binds can be seen in the structure. The

yellow side chains form salt bonds in the T structure that are broken in the R structure. One pair

of the 𝛼-𝛽 subunits also rotates with respect to the other by about 15∘ in the interconversion of

R and T forms. Copyright by Professor Jane Richardon. Reprinted with permission.
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FIGURE 9-10. Structure of a catalytic fragment of DNA polymerase from Bacillus
stearothermophilus. The “thumb” and “fingers” of the structure are labeled, and the tem-

plate and primers can be seen as stick structures. Copyright by Professor L. S. Beese, Duke

University. Reproduced with permission.

The DNA interacts with the protein through a very extensive network of nonco-

valent interactions that include hydrogen bonding, electrostatics, and direct contacts.

More than 40 amino acid residues are involved that are highly conserved in all DNA

polymerases. The interactions occur with the minor groove of the DNA substrate

and require significant unwinding of the DNA. The major groove does not appear to

interact significantly with the protein and is exposed to the solvent.

The synthesis of DNA is a highly processive reaction, that is, many nucleotides

are added to the growing chain without the enzyme and growing chain separating.

In the case of the polymerase under discussion, more than 100 nucleotides are added

before dissociation occurs. This requires the DNA chain to be translocated through

the catalytic site. This translocation has been observed to occur in the crystals by

soaking the crystals with the appropriate nucleotides and determining the structures

of the products of the reactions. Remarkably, the crystals are quite active, with up to

six nucleotides being added and a translocation of the DNA chain of 20 Å.

The enzyme exists in multiple conformations. The initial binding of the free

nucleotide occurs in an open conformation, but the catalytic step is proposed to

occur in a closed conformation in which the fingers and thumb clamp onto the DNA

and close around the substrates. The fidelity of DNA polymerase is remarkable,

with only approximately one error per 105 nucleotides incorporated (17). This is

accomplished primarily by the very specific hydrogen bonds occurring between the

template and the incoming nucleotide, but interactions with the minor groove are

also important. The conformational change accompanying binding of the nucleotide

to be added probably also plays a role in the fidelity by its sensitivity to the overall

shapes of the reactants. In addition, the template strand is postulated to move

from a “preinsertion” site to an “insertion” site. The acceptor template base that

interacts with the incoming nucleotide occupies the preinsertion site in the open



222 X-RAY CRYSTALLOGRAPHY

conformation and the insertion site in the closed conformation where interaction with

the incoming nucleotide occurs. The structure of an “ajar” conformation occurring

between the open and closed conformations, which probes incoming nucleotides

for complementarity before closure around the substrate, has been determined (18).

Thus, the addition of each nucleotide is accompanied by a series of conformational

changes that translocate the template into position for the next step in the reaction.

A movie of this process is available on the Internet (16).

Even the high fidelity of the polymerase reaction is not sufficient for the reliable

duplication of genes that is required in biological systems. Consequently, the enzyme

has a built-in proofreading mechanism, an exonuclease enzyme activity that is located

35 Å or more from the polymerase catalytic site. If an incorrect nucleotide is incor-

porated, the match within the catalytic site is not perfect, and the polymerase reaction

stalls. This brief pause is sufficiently long so that the offending nucleotide base can

migrate to the exonuclease site and be eliminated. Unfortunately, the proofreading

process itself is not perfect so that for every 20 incorporations or so a correct base is

chopped off. This wasteful process, however, increases the fidelity of replication by

a factor of about 1000.

This very brief discussion of DNA polymerase indicates the great insight into bio-

logical reactions that knowledge of macromolecular structures can bring. If the crys-

tals are biologically active, multiple structures with various substrates and inhibitors

can provide a detailed mechanistic proposal. This paves the way for additional exper-

iments that will shed even more light on the molecular mechanism. The visualization

of biomolecular structures is an essential tool for the understanding of biological

processes in molecular detail (19),
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PROBLEMS

9-1. Assume a lattice of atoms equidistant from each other in all directions (a cubic

lattice) with a distance between atoms of 2.86 Å. If a crystal of this material is

irradiated with X-rays with a wavelength of 0.585 Å, at what angles are Bragg

reflections seen for the planes that are 2.86 Å apart? (More than one set of reflec-

tions will be seen, but we will not deal with that complexity here.) If the X-rays

have a wavelength of 6.00 Å, what would be observed?

9-2. The bond energy for a C—C bond is about 340 kJ/mol, 600 kJ/mol for C=C, and

400 kJ/mol for C—H. Calculate the energy/mol associated with X-ray radiation

with wavelengths of 0.585 and 1.54 Å. What does this imply about the stability

of biomolecules in an X-ray beam?

9-3. When a molybdenum target is used as an X-ray source, X-rays of wavelength

0.710 Å are produced. For a particular crystal, a reflection was observed at 4∘
48′. What are the possible distances between Bragg planes? The same reflection

observed when a copper target is used as an X-ray source is found at 10∘ 27′.
What is the wavelength of the X-ray produced by the copper target?

9-4. A crystal structure consists of identical units called unit cells. The unit cells

are arranged in order, much like a brick wall, to form the crystal. The unit cell

contains multiple atoms, and often multiple molecules. Consider one particular

plane of a unit cell that extends indefinitely in the X direction. The following

structure factors, Fi, were obtained for the planes (Data from P. W. Atkins, Phys-
ical Chemistry, 3rd edition, Freeman, New York, 1986, p. 561.):

Plane 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fi 16 −10 2 −1 7 −10 8 −3 2 −3 6 −5 3 −2 2 −3

Assume that the electron density, 𝜌(x), can be calculated from the structure fac-

tors by the relationship

𝜌(x) = F0 + 2
∑
i>0

Fi cos(2𝜋ix)

http://www.protein
http://kinemage.biochem
http://rasmol.org/
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Evaluate this sum for x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0, and

construct a plot of 𝜌(x) versus x. (This is best done with a computer program.)

The maxima in the plot correspond to positions of atoms along the x-axis. This

exercise should give you a good idea of how electron density maps are obtained.

The equation for 𝜌(x) is an example of a Fourier transformation.



CHAPTER 10

Electronic Spectra

10.1 INTRODUCTION

The most common type of spectroscopy involves light in the visible and ultraviolet

regions of the spectrum interacting with molecules. This interaction causes electrons

to shift between their allowed energy levels. If light shines on a colored sample, some

of the radiation is absorbed by the sample. This absorption can heat the sample, it can

cause photons of the same or lower energy to be emitted, or photochemical reactions

can occur. We will not be concerned with the latter phenomenon. Of course, in all

cases, energy must be conserved, that is, the total energy of all of the three processes

must be equal to the energy of the photons that are absorbed.

The absorption of light is due to the interaction of the oscillating electromagnetic

field of the radiation with the charged particles in the molecule. If the electromagnetic

force is sufficiently large, the electrons in the molecule are rearranged, that is, shifted

to higher energy levels. The absorption process is extremely fast, occurring in about

10−15 s. The excited state equilibrates with its surroundings and returns to the ground

electronic state either by the production of heat or by the emission of radiation with an

energy equal to or less than that of the absorbed radiation. The latter process is called

fluorescence and typically occurs in nanoseconds. The absorption process is shown

schematically in Figure 10-1; a more exact description is discussed later (Fig. 10-11).

The details of light absorption by a molecule can be determined directly from

quantum mechanical calculations. A transition of electrons from one energy level

to another occurs when the two electronic states in question are coupled. The

detailed calculation tells us what transitions between the energy levels are allowed,

for example, from energy level 1 to energy level 2. Electrons can only move

between certain energy states; not all transitions are allowed. These selection rules
are important because they allow us to predict what wavelengths of light will be

absorbed and emitted. Although this facet of spectroscopy will not be of great

concern here, it is important to remember that transitions of electrons between

energy levels are governed by a set of rules. Exceptions to selection rules sometimes

occur, but with a much lower probability than the favored event. This is primarily
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FIGURE 10-1. Simplified schematic diagram of electron excitation by absorbance of radia-

tion. An electron is excited to a higher energy level by radiation of frequency v. It returns to

its ground state through fluorescence at a frequency v′ and/or by dissipation of heat. A more

complete diagram is presented in Figure 10-11.

because the potential energy functions used in the quantum mechanical calculations

are not perfect.

10.2 ABSORPTION SPECTRA

From a practical standpoint, the most important aspect of the quantum mechanical

calculation is the determination of how much light is absorbed by the sample. This

is embodied in the Beer–Lambert law, which gives the relationship between the light

intensity entering the solution, I0, and the light intensity leaving the solution, I:

log

(
I0

I

)
= A = 𝜀cl (10-1)

Here A is defined as the absorbance, 𝜀 is the molar absorbtivity or extinction coef-

ficient, c is the concentration of the absorbing material, and l is the thickness of the

sample through which the light passes. In visible–ultraviolet spectrophotometers, a

solution of the sample is put into a cuvette of calibrated dimensions, and visible or

ultraviolet light is passed through the sample. The intensity of the light before and

after passing through the solution is determined through the use of a variety of detec-

tors, such as photomultipliers and photodiodes. A schematic diagram of a typical

spectrophotometer is shown in Figure 10-2. The extinction coefficient is a different

constant for each wavelength and is characteristic of the molecule under investigation.

In principle, it can be calculated through quantum mechanics, but more practically it

can be determined experimentally. A spectrophotometer also must account for light

lost by reflection, absorption by the cuvette, and various other factors.

Deviations from the Beer–Lambert law can be observed in the laboratory. For

example, the light might not be monochromatic, the sample might be inhomogeneous,
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Monochromator Sample
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A

FIGURE 10-2. Schematic representation of an absorption spectrophotometer. Common light

sources are tungsten and arc lamps and lasers. Monochromatic light of intensity I0 is obtained

with a prism or diffraction grating. The detection of the transmitted light of intensity I is with

a photomultiplier or photodiode, with the electronic signal converted to the absorbance, A.

light scattering could occur, the photodetectors might exhibit nonlinear behavior,

etc. These are instrumental and sample artifacts. However, apparent deviations that

are due to the molecular properties of the sample also occur: for example, sample

aggregation or complex formation as the concentration is changed. In this case, the

deviations can be used to study these properties. Experimental studies must care-

fully verify the validity of the Beer–Lambert law over the concentration range being

studied.

A very important property of light absorbing solutions is that if multiple absorbing

species are present, the total absorbance is simply the sum of the absorbance of the

individual species. For example, for species X and Y, the absorbance is

A
𝜆
= AX

𝜆
+ AY

𝜆
= 𝜀

X
𝜆

l[X] + 𝜀
Y
𝜆

l[Y] (10-2)

If measurements are made at two different wavelengths where the extinction coeffi-

cients are sufficiently different, it is possible to determine the concentrations of the

individual species if the extinction coefficients are known. Equation (10-2) generates

two equations with different numerical values of the extinction coefficients at the

two wavelengths. These two equations can be solved simultaneously to give the two

concentrations. This is a very common method for determining the concentrations

of individual species in solutions. In fact, this approach can be extended to more

complicated situations. For example, if three species are present, absorbance mea-

surements at three different wavelengths can be used to determine the concentrations

of the individual components.

The wavelength at which two components have exactly the same extinction coef-

ficient is called the isobestic wavelength. In this case, it is obvious that measurement

of the absorbance determines the total concentration of the two components:

Aisobestic = 𝜀isobesticl([X] + [Y]) (10-3)

Although one or more isobestic wavelengths may be found for any pair of compo-

nents, this is not necessarily the case, as the two components may not have significant

absorbance in the same wavelength region. A useful rule to remember is that if two
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or more isobestic wavelengths are seen at a series of different concentrations and/or

varying conditions such as pH, then only two components are present. (This is not

entirely rigorous, but the probability of this not being the case is exceedingly small.)

This is especially useful when examining samples in which the individual extinction

coefficients are not known.

10.3 ULTRAVIOLET SPECTRA OF PROTEINS

Proteins that do not contain strongly absorbing extrinsic cofactors such as hemes

have a very characteristic ultraviolet spectrum, whereas they are essentially transpar-

ent in the visible region of the spectrum. The spectrum of serum albumin is shown

in Figure 10-3 as a plot of the absorbance versus the wavelength. It has two absorp-

tion maxima: one at about 280 nm and the other, much stronger absorption, at around

190–210 nm. The absorption at 280 nm is frequently used to measure protein con-

centrations. Although the absorption is much stronger at 200 nm, it is harder to make

measurements at this wavelength, so absorption at 200 nm is not routinely used as an

analytical tool. The ultraviolet spectrum of a protein is sufficiently characteristic to

use as a preliminary indication that a protein is present.

The spectra of the aromatic amino acids phenylalanine, tyrosine, and tryptophan

are shown in Figure 10-4. It can be readily seen that electronic transitions in tyrosine
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FIGURE 10-3. Ultraviolet absorption spectrum of bovine serum albumin at pH 7.0. The

extinction coefficient is plotted versus the wavelength in two panels because of the large dif-

ference in the ordinate scale as the wavelength changes. Data from E. Yang in I. Tinoco, K.

Sauer, J. C. Wang, and J. D. Puglisi, Physical Chemistry, 4th edition, Prentice-Hall, Englewood

Cliffs, NJ, 2002, p. 548.
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FIGURE 10-4. Absorption spectra of phenylalanine, tyrosine, and tryptophan at pH 6.0. Note

the logarithmic scale on the ordinate. Adapted from S. Malik in D. B. Wetlaufer, Ultraviolet

spectra of proteins and amino acids, Adv. Protein Chem. 17, 303 (1962). © 1962, with permis-

sion from Elsevier.

and tryptophan are primarily responsible for the absorption peak at around 280 nm.

It can also be seen that all three amino acids absorb strongly at shorter wavelengths.

Measurements of the spectra of polypeptides not containing aromatic amino acids

show strong absorbance at around 192 nm due to electronic transitions associated

with the peptide bond. Thus, the absorbance maximum in the 190 – 210 nm range

is due to both aromatic amino acids and peptide bonds. The absorption due to side

chains of other amino acids is typically at least an order of magnitude less in this

wavelength region.

The spectra of aromatic amino acids and peptide bonds in proteins are significantly

influenced by their local environments. This is because the spectra are fundamentally

due to electronic phenomena so that structural features that determine the local charge

distribution and the local dielectric constant strongly influence the spectra. Thus, the

spectra of peptide bonds and aromatic amino acids buried inside the protein are some-

what different than those on the exterior of the protein. Hydrogen bonding and ion

pair interactions also influence the spectra. This environmental sensitivity of protein

spectra can be used to obtain information about the structure of proteins. For example,

the amount of 𝛼-helix, 𝛽-sheet, and random coil can be estimated from the ultravi-

olet spectrum (1). A denatured protein usually has a somewhat different ultraviolet

spectrum than the native protein so that protein folding reactions can be monitored

by measuring spectral changes. However, the change in the ultraviolet spectrum is
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usually rather small so that other methods have proved more useful for assessing sec-

ondary structure and monitoring protein folding (e.g., circular dichroism, which is

discussed later).

10.4 NUCLEIC ACID SPECTRA

In contrast to proteins, all of the common nucleotide bases have quite similar

absorption spectra, with an absorption peak at around 260 nm. The spectra of

adenine, thymine, cytosine, uracil, and guanine are shown in Figure 10-5. Nucleic

acid solutions also are essentially transparent in the visible region of the spectrum.

The intense absorption at 260 nm is frequently used as an indication of the presence

of nucleic acids and can be used to determine their concentrations by use of the

Beer–Lambert law.

Also, the local environment of individual nucleotide bases can influence the spec-

trum. Generally, nucleic acids have a lower absorbance than the sum of the absorbance

of the individual nucleotides. This phenomenon is called hypochromicity and is due

to the “stacking” or lining up of parallel planes of the bases. An increase in absorption

is called hyperchromicity. These phenomena are very useful for determining whether

nucleic acids are structured. For example, native (double-helix) DNA displays signifi-

cant hypochromicity, and if the DNA is unwound, the absorbance at 260 nm increases.

Although the stable structure of DNA is the well-known double helix, the

double-helix structure is lost as the temperature increases, and at a sufficiently

high temperature, the two strands of DNA separate. This loss of structure can be

monitored by the increase in absorbance at 260 nm, as shown schematically in

Figure 10-6. Obviously, the more stable the DNA, the higher the temperature that is

needed to break down the structure so that doing a temperature “melt” of DNA is a

useful tool for determining the stability of a specific DNA. With this technique, for
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FIGURE 10-5. Absorption spectra in water of the four bases commonly found in nucleic

acids: thymine (T), cytosine (C), adenine (A), guanine (G), and uracil (U). Data from H.

Du, R. A. Fuh, J. Li, A. Corkan, and J. S. Lindsey, Photochem. Photobiol. 68, 141 (1998)

[http://omlc.ogi.edu/spectra/PhotochemCAD].

http://omlc.ogi.edu/spectra/PhotochemCAD
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FIGURE 10-6. Schematic representation of DNA melting for two different DNA. The

absorbance at 260 nm increases as the temperature is raised and the double-stranded struc-

ture breaks down. The temperature at which the melting occurs increases as the amount of

G–C base pairs increases.

example, it is easy to show that G-C base pairs are more stable than A-T pairs. By

studying the stability of a series of nucleic acid oligomers, it is possible to predict

the stability of DNA and, less reliably, RNA structures (cf. Chapter 3). Also, when

DNA is synthesized, the double-helix structure must be broken in order to provide

a single-strand template for the polymerization reaction. The kinetics of DNA

structure formation/ breakdown has been discussed in Chapter 6. The unwinding of

DNA in vivo is done by helicase enzymes. Obviously, monitoring the DNA structure

is important for understanding DNA synthesis, in general, and the mechanism of

action of helicases, in particular. This subject is considered further later in this

chapter.

10.5 PROSTHETIC GROUPS

Some proteins contain tightly bound organic molecules and/or metal ions. These are

usually referred to as prosthetic groups and are essential for the biological activity of

the macromolecules. The spectra of these prosthetic groups are often in the visible

region of the spectrum, easily separable from the absorption due to the protein, and

can be monitored to follow the reactions undergone by the protein.

One of the most common prosthetic groups is heme, the structure of which is

shown in Figure 10-7. The heme binds iron tightly, either as Fe2+ or as Fe3+. Prob-

ably, the most well-known heme protein is hemoglobin, mentioned in Chapter 9.

Hemoglobin has a molecular weight of about 64,000. It has four polypeptide chains

and contains four hemes. It is, of course, responsible for the transport of oxygen in



232 ELECTRONIC SPECTRA

COO– COO–

CH2

CH3

CH3

CH3

CH2

CH2

CH2

CH

CH2

H3C

HC

H

H

H

C

C
C

C
C

C
C

C

C

C

C

C N
Fe

N

N

NC

CC

C
C C

C

H
C

H2C

FIGURE 10-7. Structure of the heme found in hemoglobin. The Fe is in the oxidation state

+2 when oxygen is bound.

the body. The structure of the protein is well known (Fig. 9-9) and its function has

been extensively studied (cf. Ref. 2). For the purposes of this discussion, we con-

sider only the visible spectra of the molecule. The active molecule contains Fe2+:

when oxygen is bound, it is coordinated directly to the iron. In the absence of oxy-

gen, this iron coordination site is occupied by water. The visible spectra of oxy- and

deoxyhemoglobin are quite distinct, as shown in Figure 10-8. This is because the
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FIGURE 10-8. Visible absorption spectra of oxyhemoglobin (dashed line) and deoxyhe-

moglobin (solid line). These two forms of hemoglobin can be readily distinguished with

absorption spectroscopy. Adapted from L. Stryer, Biochemistry, 2nd edition, Freeman, San

Francisco, CA, 1981, p. 52. © 1976, 1981 by Lubert Stryer. Used with permission of Freeman.
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binding of oxygen alters the environment of the iron/heme, thereby altering the elec-

tronic energy levels. Thus, the visible spectrum can be used to monitor the binding of

oxygen. Oxyhemoglobin is responsible for the bright red color of oxygenated blood.

The ferrous iron can be oxidized to the ferric form, which also alters the spectrum

of the molecule. This form of hemoglobin is not involved in oxygen transport. The

molecular mechanism for the binding of oxygen to hemoglobin is now understood

in molecular detail. It is a highly cooperative process with alterations in the position

of the iron in the molecule and significant conformational changes within the protein

accompanying binding (cf. Chapter 17).

Cytochromes also contain hemes. For these molecules, the oxidation-reduction of

iron is crucial to their physiological function. The progress of the oxidation–reduction

reactions can be readily monitored through changes in the visible spectrum.

Flavins constitute another type of common prosthetic group. Flavin mononu-

cleotide (FMN) and flavin adenine dinucleotide (FAD) are important constituents

in many enzymes that participate in redox reactions. Their structures are shown

in Figure 10-9. These flavin prosthetic groups can exist in three oxidation states:

oxidized, semiquinone radical, and reduced. (A radical is an organic molecule with

an unpaired electron.) All three of these oxidation states have different absorption

peaks in the visible. The three oxidation states and their absorption maxima are

included in Figure 10-9. The semiquinone can also lose a hydrogen to give a

diradical (two unpaired electrons) with yet a different absorption maximum. The pK
for the loss of this hydrogen is about 8.4. Flavin enzymes can undergo both one-

and two-electron oxidation–reduction reactions and can be readily reoxidized by

oxygen. The visible spectrum serves as a useful indicator of the oxidation state of

the flavin in an enzyme. It can also be used to monitor the reaction progress of the

enzymatic reactions.

Why do these prosthetic groups have electronic transitions at longer wavelengths

than proteins? This can be readily understood in molecular and quantum mechanical

terms. Both hemes and flavins have highly aromatic structures, that is, extensive con-

jugation occurs. As a result, the electrons are delocalized around the ring structures

(𝜋 electrons). If the electrons are considered as “particles in a box,” as discussed in

Chapter 7, the size of the box is increased relative to less conjugated structures such as

tyrosine, phenylalanine, and tryptophan. An increase in the size of the box increases

the wavelengths that characterize the electronic transitions (Eq. (7-12)).

10.6 DIFFERENCE SPECTROSCOPY

Because the absorption of light by proteins and nucleic acids depends on the local

environment of the chromophores, changes in light absorption often occur when small

molecules bind to proteins or nucleic acids and when macromolecules interact. As an

example, we consider the binding of nucleotides to the enzyme ribonuclease A. As the

name implies, ribonuclease A hydrolyzes RNA. It is a small protein with a molecular

weight of approximately 14,000 and contains tyrosine, tryptophan, and phenylalanine

so that it has a typical protein ultraviolet spectrum. Its structure is shown in Figure 9-8.
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FIGURE 10-9. Oxidation states of FAD and FMN with the absorption maxima indicated.

These oxidation states are important for the biological function of these molecules and can be

readily distinguished with absorption spectroscopy. The pK of the semiquinone is about 8.4.
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It binds nucleic acids and has a great preference for cleavage adjacent to a pyrimidine.

When nucleotides bind to the enzyme, the ultraviolet spectrum is changed. However,

the changes are very small so that a technique called difference spectroscopy must

be used.

With difference spectroscopy, a double-beam spectrophotometer is used. Each

beam contains two cuvettes. For one of the beams, one cuvette contains the nucleotide

and the other the protein. In the other beam, one of the cuvettes contains a mixture

of the nucleotide and the protein and the other contains buffer. The concentrations of

nucleotide and the enzyme are exactly the same in each beam. Consequently, any dif-

ference in absorbance that is measured must be due to the interaction of the nucleotide

and the protein. The absorbance in the beam containing the mixture of enzyme and

nucleotide (assuming a path length of 1 cm) is

A1 = 𝜀EL[EL] + 𝜀E[E] + 𝜀L[L]

= 𝜀EL[EL] + 𝜀E([E0] − [EL]) + 𝜀L([L0] − [EL]) (10-4)

where 𝜀’s are the extinction coefficients for the enzyme, E, the ligand, L, and the

enzyme–ligand complex, EL. The study of ligand binding showed that only one

nucleotide binds per enzyme molecule. The absorbance in the other beam is given

by

A2 = 𝜀E[E0] + 𝜀L[L0] (10-5)

Subtraction of Eq. (10-5) from Eq. (10-4) gives the difference absorbance

ΔA = (𝜀EL − 𝜀E − 𝜀L)[EL] = Δ𝜀[EL] (10-6)

Thus, measuring the difference absorbance is a direct measure of the concentration

of the enzyme–nucleotide complex.

Titration of the enzyme with the nucleotide and extrapolation to a concentration

where all of the ligand is bound to the enzyme permits the determination of the

difference extinction coefficient, Δ𝜀. The difference extinction coefficient for the

binding of 2′-cytidine monophosphate to ribonuclease is shown in Figure 10-10 at

different wavelengths. Note that significant changes are found at wavelengths of 260

and 280 nm, indicating that the extinction coefficients of both the enzyme and the

nucleotide are altered in the complex. Note also the isobestic point that is found as

the pH is varied, demonstrating the presence of only two absorbing species, bound

and unbound. Since the concentration of all species can be determined during the

titration, the binding constant can be calculated and was found to be 1.8 × 105 M−1

at pH 5.5. An extensive study carried out with various ligands over a range of pH

provided valuable information about the molecular details of the interaction between

the ligands and enzyme (3).



236 ELECTRONIC SPECTRA

10
–2

Δ
ε(

M
–1

 c
m

–1
)

260
–56

–48

–40

–32

–24

–16

–8

0

8 6.0

5.5

4.0

4.5

4.0

270 280

λ (nm)

290 300

FIGURE 10-10. Difference absorption spectra of ribonuclease A-2′-CMP as a function of

pH. The pH is indicated next to each difference spectrum. The dashed line is the calculated

difference spectra for the protonated ring species of 2′-CMP. Reprinted in part with permission

from D. G. Anderson, G. G. Hammes, and F. G. Walz, Jr., Biochemistry 7, 1637 (1968). © 1968

by American Chemical Society.

10.7 X-RAY ABSORPTION SPECTROSCOPY

X-rays can also be absorbed by materials, and the Beer–Lambert law (Eq. (10-1))

is applicable. The energy associated with an X-ray of 1 Å wavelength is about 106

kJ/mol (E = hc/𝜆). This energy is sufficiently large that the absorption of X-rays

by atoms results in electrons being ejected from inner orbits (1s, 2s, 2p). The X-ray

absorption spectra of atoms consist of sharp peaks, the peaks occurring at different

wavelengths for every element in the periodic table. If the atom is in a molecule, the

ejected electron interacts with the environment, resulting in small oscillations around

the main peak in the absorption spectra due to back scattering. Analysis of this fine

structure provides information about the nature of the atoms surrounding the atom

that has absorbed the X-rays. This is particularly useful for probing the environment

around heavy metals in biological structures.

10.8 FLUORESCENCE AND PHOSPHORESCENCE

Fluorescence is a very common phenomenon in biology and elsewhere. As previously

discussed, fluorescence is the emission of light associated with electrons moving from
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an excited state to the ground state. Fluorescence and phosphorescence are often

more useful tools for studying biological processes than absorbance. They can be

considerably more sensitive than absorbance so that much lower concentrations can

be detected. They are also often extremely sensitive to the environment and thus are

extremely good probes of the local environment. Some other useful properties will

be discussed a bit later.

In order to understand fluorescence and phosphorescence, a somewhat more com-

plex energy diagram such as Figure 10-11 is useful. In this diagram, two electronic

energy levels are shown, each with a manifold of vibrational energy levels. The vibra-

tional energy levels are much more closely spaced than the electronic energy levels

and are due to the vibrations of atoms within a molecule. Different modes of vibra-

tion have different energies so that manifolds of quantized energy levels exist. The

properties of vibrational energy levels can be calculated through quantum mechanics.

Generally, electrons are in their ground electronic energy state at room temperature,

and the molecules are also in their lowest vibrational energy level. They can be excited

by light to the next electronic energy level, but can be in many different vibrational

energy levels in the excited state. After this excitation, the molecule will return to

Intersystem
crossing

Radiationless
transitions

Absorbance Fluorescence Phosphorescence

FIGURE 10-11. Schematic energy level diagram for absorption, fluorescence, and phos-

phorescence. This is often referred to as a Jablonski diagram. Electrons are excited from a

ground-state singlet energy level, S0, to various vibrational states of a higher electronic energy

level, S1. All electrons are paired in singlet states, that is, their spins are in opposite direc-

tions. Radiationless decay occurs to the ground vibrational energy level of S1. As the electrons

return to the ground electronic state, fluorescence occurs. In some cases, the excited electrons

can move to a triplet state, T1, in a radiationless transition (intersystem crossing). Triplet states

have two unpaired electrons. The electrons in the triplet state can then return to the ground

electronic state with phosphorescence occurring.
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the lowest vibrational energy level of the second electronic energy level very rapidly,

in 10−13 s or less. This generally occurs through a radiationless transition, that is,

through the production of heat. Electrons in the second energy level can then decay

to the electronic ground state, again in various vibrational energy levels. The emis-

sion produced is fluorescence. The decay to the ground electronic state can also occur

without the emission of light, that is, by producing heat. Another type of emission is

phosphorescence, which will be discussed later.

From Figure 10-11, it is clear that the emitted light must be at a longer wavelength

than the absorbed light because the energy change associated with emission can never

be greater than the energy change associated with absorption. From this diagram, it is

also clear that the number of photons emitted can never exceed the number of photons

absorbed. The efficiency of fluorescence is characterized by the quantum yield, Q,

which is the fraction of photons absorbed that are eventually emitted:

Q =
number of photons emitted

number of photons absorbed
(10-7)

In practice, the quantum yield can be quite close to 1, but for most molecules that

fluoresce well, it is usually in the range of 0.3 – 0.7. Not all molecules that absorb light

produce measurable fluorescence; in fact, most do not. Instead, decay to the ground

state is radiationless, via heat production, and the quantum yield is essentially zero.

The only common amino acid that has a useful fluorescence spectrum is tryptophan,

and none of the common nucleic acids display significant fluorescence.

The measurement of fluorescence (and phosphorescence) is more complex than

the measurement of absorption because the sample must be excited at a specific

wavelength and the fluorescence observed at a different wavelength. Typically, the

emission is detected perpendicular to the excitation beam. The emission spectrum is

obtained by keeping the excitation wavelength constant and observing the emission

over a range of wavelengths. The fluorescence of tryptophan, an amino acid found in

many proteins, is shown in Figure 10-12. Also shown is the absorption spectrum. The

emission spectrum in the figure was determined by exciting tryptophan with light at

the absorption maximum of 275 nm. The excitation spectrum is obtained by observ-

ing the emission at a given wavelength and varying the excitation wavelength. The

quantum yield is different for each pair of excitation and emission wavelengths. An

absolute measurement of fluorescence would require knowledge of the number of

photons absorbed at the excitation wavelength and the number of photons emitted

at the emission wavelength. Such measurements are very difficult to make so that in

practice the fluorescence intensity is usually expressed in relative terms or in com-

parison with a standard solution where the quantum yields are well known.

A more quantitative description of fluorescence is useful for understanding the

experimental measurements. The number of excited molecules is proportional to the

amount of light absorbed, which can be determined from the Beer–Lambert law:

It = I0e−2.3 𝜀(𝜆)cl (10-8)
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FIGURE 10-12. Absorption and fluorescence spectra of tryptophan. The solid line is the

extinction coefficient, and the dashed line is the fluorescence emission in arbitrary units with

excitation at approximately 275 nm. D. Freifelder, Physical Biochemistry, 2nd edition, Free-

man, New York, 1982, p. 539. © 1976, 1982 by Freeman. Used with permission.

Here, It is the intensity of the light of incident intensity I0 after it has passed a distance

l through a solution of concentration c with an extinction coefficient of 𝜀(𝜆) at wave-

length 𝜆. Fluorescence measurements are made with solutions of low absorbance so

that the exponential can be expanded to give

It = I0[1 − 2.3𝜀(𝜆)cl] (10-9)

Thus, the concentration of excited molecules is proportional to the light absorbed,

I0 − It = 2.3𝜀(𝜆)clI0 (10-10)

The fluorescence emitted, F, is the product of the concentration of excited molecules

times the quantum yield times the fraction of emitted photons collected by the instru-

ment,

F = (constant)Qc (10-11)

From the earlier discussion, it is clear that the constant contains several proportional-

ity relationships that are not easily determined, thus necessitating the determination of

relative fluorescent intensities rather than absolute intensities. From a practical stand-

point, it is important to note that the fluorescence is proportional to the concentration

if the absorbance of the solution is sufficiently low to permit the expansion of the

exponential. Fortunately, this situation is usually quite easy to obtain experimentally.

The discussion thus far is valid for singlet electronic states, that is, states in which

all of the electron spins are paired. Many complex molecules have electronic states

in which two unpaired electrons exist, a triplet electronic state. These are at a higher

energy state than the ground singlet state and can be at a lower energy than the first
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excited singlet state. This is shown schematically in Figure 10-11. In principle, the

molecule can move from the excited singlet state to the triplet state, and then decay

can occur to the ground state via light emission or the production of heat. The decay

via light emission is termed phosphorescence. As with fluorescence, the emitted light

must be at a longer wavelength than the absorbed light.

What makes phosphorescence different than fluorescence, and how can they be

distinguished? In the case of fluorescence, quantum mechanics tells us that the tran-

sitions between energy states are allowed, and they occur very rapidly, typically in

nanoseconds. In the case of phosphorescence, quantum mechanics tells us that the

interconversion from a single state to a triplet state is not allowed, that is, it will

not occur readily. The result is that phosphorescence generally takes place in mil-

liseconds or longer. Although this qualitative distinction between fluorescence and

phosphorescence is usually sufficient to distinguish between the two, the proof of

what is occurring requires determination of the magnetic properties of the excited

state. Because the triplet state has unpaired electron spins, its energy will be altered

in a magnetic field, whereas this will not happen for fluorescence. At room tem-

perature, DNA does not phosphoresce, but in frozen solutions, thymidine will phos-

phoresce. We will not explicitly consider phosphorescence further, but it should be

remembered that it is very similar to fluorescence; moreover, many biological sys-

tems display phosphorescence, perhaps most notable are plant and animal life in the

ocean.

Figure 10-11 is a considerable simplification of the real situation where many dif-

ferent electronic states are possible so that multiple electronic energy levels must be

taken into account. In addition, many different vibrational modes are possible, so

multiple manifolds of vibrational energy levels are generally present. However, the

principles enunciated are equally valid for these more complex situations.

10.9 RecBCD: HELICASE ACTIVITY MONITORED BY FLUORESCENCE

As mentioned earlier, part of the mechanism of DNA synthesis involves unwinding

DNA. RecBCD is a protein from Escherichia coli that functions as a helicase (cf.

Ref. 4). It also has an endo- and exonuclease activity, that is, it hydrolyzes DNA.

The helicase activity requires the hydrolysis of MgATP to furnish the Gibbs energy

necessary for the unwinding process. Monitoring absorbance is not a useful assay

for following the unwinding process because of the small changes in absorbance

accompanying unwinding relative to the total absorbance. However, a fluorescence

assay was developed by Roman and Kowalczykowski (4) that provides a continuous

assay of the helicase activity. This assay makes use of a protein that binds specifically

to single-stranded DNA, SSB. The binding process stabilizes the single-stranded

DNA. Fortunately, when SSB binds to single-stranded DNA, the fluorescence

of SSB due to tryptophan is quenched. If SSB is put into an assay mixture con-

taining double-stranded DNA, RecBCD, and MgATP, the SSB will bind to the

single-stranded DNA as it is produced. The result is a decrease in the tryptophan

fluorescence as more and more single-stranded DNA is formed. This change in
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fluorescence is a direct monitor of the rate of DNA unwinding because the binding

of SSB to single-stranded DNA is fast relative to the rate of the unwinding reaction.

The apparent turnover number for the enzyme determined by this method ranged

from 14 to 56 μM base pairs s−1 (μM recBCD)−1, depending on the experimental

conditions.

The mechanism of action of the recBCD helicase is postulated to proceed by the

enzyme binding to DNA and unwinding many base pairs before it dissociates from

the DNA. An important question to ask is how much unwinding occurs before the

helicase dissociates. When an enzyme catalyzes many events during a single bind-

ing, the reaction is called processive: the greater the amount of unwinding/binding

event, the greater the processivity of the enzyme activity. With the assay described

earlier, it was possible to quantitate the processivity (5). The processivity increases

in a hyperbolic manner as the MgATP concentration increases, reaching a limiting

value of 32 kilobases at saturating concentrations of MgATP. The apparent dissocia-

tion constant for MgATP deduced from the hyperbolic reaction isotherm is about 40

μM. The processivity was found to be quite sensitive to salt concentration. Thus, a

substantial amount of DNA is unwound during each event, ultimately resulting in the

synthesis of long stretches of DNA by the polymerase enzyme.

This is but one example of the use of fluorescence to develop an assay for an impor-

tant biological process, with the subsequent determination of mechanistic aspects of

the process.

10.10 FLUORESCENCE ENERGY TRANSFER: A MOLECULAR RULER

Thus far, we have considered only what happens within a single molecule when light

is absorbed. However, it is also possible for a molecule in an excited electronic state

to transfer the energy above the ground state to another molecule. This phenomenon

is termed Förster energy transfer (6). This can be readily understood if a simple

kinetic scheme is considered. If the energy donor, D, is considered, fluorescence can

be described by the following sequence of events:

D
hv
−−→D∗ (light absorption)

D∗ kf−−→D + hv′ (fluorescence of donor)

D∗ kr−−→D (radiationless de-excitation) (10-12)

The k’s are rate constants in this scheme, 𝜈 is the light frequency, and * designates

the excited electronic state. The “natural” fluorescence lifetime is defined as

𝜏0 = 1

kf

(10-13)

This lifetime cannot be measured experimentally but is a useful theoretical concept.
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The fluorescence lifetime is measured by exciting the molecule with short pulses

of light and following the decay of fluorescence. According to Eq. (10-12),

−d[D∗]
dt

= (kf + kr)[D∗] = [D∗]
𝜏D

(10-14)

so that the lifetime determined experimentally is

𝜏D = 1

(kf + kr)
(10-15)

Eq. (10-14) can be easily integrated with the boundary conditions that (D∗) = (D∗
0
)

when t = 0 and (D*) = 0 when t = ∞. The result is

[D∗] = [D∗
0
] exp

(
−t
𝜏D

)
(10-16)

Thus, a plot of the natural logarithm of the fluorescence intensity versus time is a

straight line with a slope of −(1∕𝜏D).
The quantum yield for this sequence of events is simply the fraction of molecules

fluorescing after excitation, or

QD =
kf

(kf + kr)
=

𝜏D

𝜏0

(10-17)

If the frequency of the fluorescence happens to overlap the absorption of a second

molecule, the acceptor (A), then some of the energy of de-excitation can be trans-

ferred directly to A, which in turn can fluoresce. The scheme in Eq. (10-12) can be

expanded to include this possibility:

D∗ + A
kT−−−→D + A∗ (energy transfer)

A∗ → A + hv′′ (10-18)

It should be noted that this energy transfer can occur even if A does not fluoresce, as

A could return to its ground state without producing light. The quantum yield of D

in the presence of A is now given by

QDA =
kf

(kf + kr + kT)
(10-19)

The efficiency of energy transfer, E, is

E =
kT

(kf + kr + kT)
= 1 −

QDA

QD

= 1 −
𝜏DA

𝜏D

(10-20)
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where 𝜏DA is the fluorescence lifetime in the presence of the acceptor. In this case,

−d[D∗]
dt

= (kf + kr + kT)[D∗] (10-21)

Thus, the efficiency of energy transfer can be measured quite readily.

This efficiency depends very strongly on the physical separation of the acceptor

and donor, and therefore can be used to calculate the distance between A and D. The

dependence of the efficiency on the distance between A and D, R, is given by

E =
R6

0

(R6
0
+ R6)

(10-22)

where

R0(in nm) = 8.79 × 10−6(J𝜅2n−4QD)1∕6 (10-23)

In Eq. (10-23), J is a measure of the spectral overlap of the fluorescence emission of

the donor with the absorption of the acceptor, 𝜅 is a measure of the relative orienta-

tions of the donor and acceptor, and n is the refractive index. Equation (10-22) was

first enunciated by Förster, hence the name Förster energy transfer. Because R0 can

be readily calculated, R can be determined directly from measurements of E. Since

E depends on the sixth power of the distance, it is a very sensitive measure of the

distance. Typical values of R0 are 3–6 nm so that distances in the range of 1–10 nm

are readily accessible to this method. The measurement of energy transfer has proved

very useful for providing structural information about biological systems, especially

in cases where the molecular structures are not well known.

10.11 APPLICATION OF ENERGY TRANSFER TO BIOLOGICAL
SYSTEMS

The use of energy transfer as a molecular ruler in macromolecular systems was ele-

gantly tested by Stryer and Haugland (7). They synthesized a series of proline poly-

mers with a fluorescent donor, dansyl, at one end and an energy acceptor, naphthyl,

at the other end. Proline was selected because the polymer is a rigid cylinder whose

length can be easily calculated. The number of prolines in the polymer varied from 1

to 12, and R varied from about 1.2 to 4.6 nm. The energy transfer efficiency obeyed

Eq. (10-22) exceedingly well, as shown in Figure 10-13, and the experimental values

of R agreed well with those determined from molecular models. They also demon-

strated that the dependence of R0 on the degree of overlap of the donor emission with

the acceptor absorbance was quantitatively correct.

With the establishment of the methodology in model systems, energy transfer

measurements were made in many biological systems. The most critical part of the

application is to label a protein or nucleic acid with a fluorescent probe at a specific

site, with essentially no labeling at nonspecific sites. This is essential if a reliable
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FIGURE 10-13. Percent efficiency of energy transfer, E, in proline polymers of various

lengths, R, with a fluorescence donor at one end of the polymer and a fluorescence accep-

tor at the other end. The solid line corresponds to Eq. (10-22). Reproduced with permission

from L. Stryer and R. P. Haugland, Proc. Natl. Acad. Sci. USA 58, 719 (1967).

interpretation of the data is to be made. As a specific example, consider the exten-

sive studies on chloroplast coupling factor 1, CF1 (8). CF1 is the soluble part of an

enzyme that is critical for ATP synthesis in chloroplasts. Very similar enzymes are in

all organisms. In animals, the enzyme is located in the mitochondria. The enzyme is

responsible for the synthesis of ATP from ADP and inorganic phosphate, an important

physiological reaction. The synthesis occurs when a pH gradient is established across

the membrane, and protons are pumped across the membrane as the synthesis pro-

ceeds. The coupling of a proton gradient and ATP synthesis is discussed in Chapter 3.

Of course, an enzyme must catalyze the chemical reaction in both directions. Thus,

the soluble portion of the enzyme catalyzes the reverse reaction, namely the hydroly-

sis of ATP. It cannot catalyze the synthetic reaction because a proton gradient cannot

be created when the enzyme is not on the membrane.

CF1 is a very complex protein and has five different subunits, with a subunit

structure of 𝛼3𝛽3𝛾𝛿𝜀. It binds three molecules of ATP or ADP, and the molecule is

intrinsically asymmetric. In a series of experiments, fluorescent probes were put in a

variety of positions on the molecule, and the distances between the probes were mea-

sured. Altogether, more than 30 distances were measured, including the distance of

CF1 sites from the surface of the membrane. These measurements were used to con-

struct a model of the enzymes. The model is shown in Figure 10-14. At the time this

work was done, the structure of the enzyme was unknown, and the model summarized
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FIGURE 10-14. Spatial arrangement of specific sites on CF1 determined by fluorescence

energy transfer measurements. The sites shown are nucleotide binding sites (N1, N2, N3), a

disulfide on the 𝛾 polypeptide chain (S-S), specific sulfhydryl groups on the 𝛾 polypeptide

chain (D, L), a sulfhydryl on the 𝜀 polypeptide chain (𝜀), and an amino group on an 𝛼 polypep-

tide chain (𝛼L). A few of the distances, in Å, are shown to establish the scale. The distances

to the membrane are maximum values since the lines need not be perpendicular to the mem-

brane surface. Reprinted from R. E. McCarty and G. G. Hammes, Molecular Architecture of

Chloroplast Coupling Factor 1, TIBS 12, 234 (1987). © 1987, with permission from Elsevier.

some important features of the enzyme, including the distance between nucleotide

binding sites and the intrinsically asymmetric nature of the structure. The asymmet-

ric structure is critical for the coordination of the chemical reaction and the pumping

of protons across the membrane. Sometime later, the structure of the mitochondrial

enzyme was determined by X-ray crystallography (9). The distances determined by

energy transfer proved to be consistent with the crystal structure. In fact, the eluci-

dation of structural features by energy transfer measurements is generally useful for

complex structures for which the molecular structure has not yet been established.

10.12 DIHYDROFOLATE REDUCTASE

As an example of the use of fluorescence to study ligand binding to a protein

and enzyme catalysis, we consider the enzyme dihydrofolate reductase (DHFR).
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DHFR catalyzes the reduction of 7,8-dihydrofolate by NADPH to give

5,6,7,8-tetrahydrofolate and NADP+. Tetrahydrofolate is essential for the biosyn-

thesis of purines, as well as several other important biological molecules. Because

of its central position in metabolism, it has been extensively studied. It is also a

target for anticancer drugs such as methotrexate. The structures of the enzyme and

enzyme–substrate/inhibitor complexes are known, and many mechanistic studies of

the enzyme have been carried out (cf. Refs. 10–12). This discussion will be limited

to a few facets of the very extensive literature available for this enzyme.

NADPH is fluorescent, with an absorption maximum at about 340 nm and an

emission maximum at about 450 nm. In addition, the enzyme contains tryptophan

so that if the enzyme is excited at 290 nm, fluorescence is observed with a maxi-

mum intensity at 340–350 nm. If NADPH is added to the enzyme, this fluorescence

is quenched about 65%, indicating the tryptophan environment is significantly altered

when NADPH binds (13). Moreover, because NADPH has a maximum absorbance

around 340 nm, significant energy transfer occurs from the excited tryptophan to

bound NADPH. This results in a new emission maximum at 420–450 nm. The extent

of NADPH binding to DHFR can be quantitatively assessed by measuring the quench-

ing of tryptophan fluorescence. This can also be done by following the fluorescence

at 450 nm. Quantitative analysis of the data permits the calculation of the equilibrium

dissociation constant, which is 1.1 μM at pH 7.0.

The kinetics of ligand binding can also be measured by mixing NADPH and DHFR

rapidly in a stopped-flow apparatus and following the quenching of tryptophan flu-

orescence or the emission at 450 nm as a function of time. The time course of the

reaction indicates a very rapid quenching, occurring in less than a second, followed

by a relatively slower reaction, occurring in seconds. The first reaction is the bind-

ing of NADPH to DHFR, whereas the second reaction is the interconversion of the

free enzyme from a form that does not bind NADPH to a form that does. The overall

reaction can be represented by the following mechanism:

DHFR + NADPH

DHFR′

DHFR–NADPH
k–1

k1

k–2 k2

A quantitative analysis of the data at pH 7.0 gives k1 = 1.7 × 106 M−1s−1
,

k−1 = 2.4s−1. The equilibrium constant for the transition from DHFR to DHFR′ was

found to be about 1, with rate constants of approximately 2.5 × 10−2 s−1 (k2 and k−2;

11). Note that for this mechanism, the overall equilibrium dissociation constant is

([DHFR] + [DHFR′])[NADPH]
[DHFR − NADPH]

=
(

k−1

k1

)(
1 + k2∕k−2

)
= 2.8μM

The dissociation constant determined from kinetics is only in fair agreement with the

dissociation constant determined from direct binding studies.
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The overall time course of the enzymatic reaction can be easily monitored by fol-

lowing the absorbance change at 340 nm because NADPH has an absorption peak

at this wavelength, whereas NADP+ does not. In addition, the individual steps in

the catalytic process can be characterized by stopped-flow studies that monitor alter-

ations in the tryptophan fluorescence as the reaction proceeds. A detailed description

of these experiments is beyond the scope of this discussion. However, it was possible

to determine which substrate binds first to the enzyme, the rate constants for the bind-

ing steps, the rate constants for conformational changes within the enzyme–substrate

complex, and the rate constants for hydride transfer. This permitted the development

of a detailed mechanism for the reaction (11,12).

Another unique use of fluorescence is fluorescence microscopy. With this tech-

nique, individual molecules are labeled with fluorescent tags and can be observed

with a light microscope (cf. Chapter 6 and Refs. 14, 15). Of course, it is not the sin-

gle molecule that is seen: it is the light from the molecule. This is analogous to seeing

the light from a star, rather than the star itself. With this technique, kinetic and equi-

librium properties of individual molecules can be studied. For example, the kinetics

of binding of substrates and inhibitors to DHFR and catalysis have been investigated

by single-molecule fluorescence microscopy (16).
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PROBLEMS

10-1. Colored pH indicators are dyes that have different spectra for different ion-

ization states. Assume the ionization of a pH indicator with pK =6.00 can be

written as

HIn ⇄ In− + H+

The measured absorbance in a 1-cm cell at an indicator concentration of 2

×10−5 M is given in the following table.

𝜆 (nm) A at pH 3.00 A at pH 9.00

400 0.200 0.000

420 0.300 0.030

440 0.150 0.150

460 0.000 0.200

480 0.000 0.150

For the same concentration of indicator, an absorbance of 0.100 is measured

at 𝜆 = 400 nm.

a. What is the pH of the solution?

b. What is the absorbance at 𝜆 = 440 nm?

c. At pH 7.00, for an indicator concentration of 3.00 × 10−5 M and a 1-cm

cell, what is the absorbance at 𝜆 = 400, 440, and 480 nm?

10-2. A sample of RNA is hydrolyzed and separated into three fractions by column

chromatography. Two of the three fractions are pure nucleotides, but the third

contains both adenylic and guanylic acids. At pH 7.0, the absorbance of the

mixture is 0.305 at 280 nm and 0.655 at 250 nm in 1-cm cells. The molar

extinction coefficients for each pure component at pH 7.0 are

𝜀280 (M−1 cm−1) 𝜀250 (M−1 cm−1)

Adenylic acid 2300 12,300

Guanylic acid 9300 15,700

Calculate the mole ratio of adenine to guanine in the RNA.

10-3. The enzyme alcohol dehydrogenase catalyzes the oxidation of alcohol by

NAD+ to give acetaldehyde and NADH. NADH has an absorption maximum

at 340 nm with an extinction coefficient of 6.20 × 103 M−1cm−1, whereas

NAD+ and the other reactants do not absorb significantly at 340 nm. Conse-

quently, the oxidation reaction can be conveniently monitored by following

the increase in absorbance at 340 nm.
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a. What is the rate of production of NADH if it is observed that the rate of

absorbance increase in a 1-cm path length cell is 0.05/min?

b. When an excess of enzyme is added to NADH, the absorbance at 340 nm

decreases by 13%. What is the extinction coefficient of NADH at 340 nm

when it is bound to the enzyme?

c. The difference in extinction coefficient can be used to determine the bind-

ing constant for the association of NADH and the enzyme. The following

data were obtained for the difference absorbance when NADH is added to

20 μM enzyme in a 1-cm path length cell.

(NADH)total (μM) ΔA (340 nm)

8.33 0.004

13.50 0.006

20.0 0.008

45.0 0.012

Calculate the binding constant from these data.

10-4. When complementary strands of deoxyoligonucleotides are mixed, they

form a double-stranded DNA at low temperatures but dissociate to single

strands as the temperature is raised. This can be observed by a decrease in

the absorbance of the solutions at 260 nm. The equilibrium for this process

can be written as

D ⇄ S1 + S2

with an equilibrium constant K = (D)∕[(S1)(S2)]. Data for two experiments

are given below. In one case, equal length strands and concentrations of

oligoA and oligoT were mixed, whereas, in the other case, the same length

strands and concentrations of oligoG and oligoC were mixed.

a. Assume that the molecules are duplexes at the lowest temperatures for

which data are given and single strands at the highest temperatures. Cal-

culate the fraction present as duplex at each temperature. Determine the

melting temperature of each duplex, that is, the temperature at which half

of the duplex has been converted to single strands.

b. What do these results tell you about the relative stability of A–T and G–C

pairs?

c. Estimate the melting temperature of complementary oligonucleotides

that are 50% A–T and 50% G–C, with the same length as in the

aforementioned experiments. (Your result is not exact, but methods are

available for calculating the melting temperatures of short DNA; cf.

Chapter 3.)
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T(oC) A (oligoA–T) T(oC) A (oligoG–C)

5 0.711 50 0.780

10 0.720 55 0.785

15 0.732 60 0.812

20 0.740 65 0.836

25 0.767 70 0.862

30 0.801 75 0.880

35 0.846 80 0.896

40 0.874 85 0.924

45 0.891 90 0.948

50 0.903 95 0.975

55 1.003

10-5. Pyrenylmaleimide is a convenient fluorescent probe for labeling sulfhydryl

residues on proteins. The fluorescence lifetime of pyrene on a protein

sulfhydryl was measured by determining the relative fluorescence inten-

sity after excitation of pyrene with a flash lamp. Typical data are given

below.

Relative fluorescence Time (ns)

0.716 20

0.513 40

0.367 60

0.264 80

0.189 100

a. Determine the fluorescence lifetime.

b. If the quantum yield is 0.7, what is the natural lifetime?

c. When a ligand is bound to the protein, the fluorescence lifetime is 10%

shorter. What might be the cause of this change?

10-6. Bovine rhodopsin is a photoreceptor protein that is an integral part of the disc

membranes of retinal rod cells and plays a key role in vision. It has a tightly

bound 11-cis-retinal that has a strong absorbance at about 500 nm. As part of

the vision cycle, the retinal is bleached by conversion to the trans-isomer. The

protein has a molecular weight of 28,000 – 40,000. Three sites were labeled

on the protein with fluorescent probes, sites A, B, and C. Fluorescence reso-

nance energy transfer was measured between these three sites and the retinal

and between the three sites themselves [C.-W. Wu and L. Stryer, Proc. Natl.
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Acad. Sci. USA 69, 1104 (1972)]. Some of the results are summarized in the

following table.

Energy donor Energy acceptor Transfer efficiency R0(Å)

A 11-cis-Retinal 0.09 51

B 11-cis-Retinal 0.36 52

C 11-cis-Retinal 0.12 33

A B 0.90 51

A C 0.92 48

B C 0.92 47

a. Calculate the distances between these six sites.

b. A protein of molecular weight 28,00 – 40,000 that is spherical has a radius

of 40 – 45 Å. What can you say about the shape of rhodopsin? Sketch a

model for the molecule based on the distances that have been measured.





CHAPTER 11

Circular Dichroism, Optical Rotary
Dispersion, and Fluorescence
Polarization

11.1 INTRODUCTION

Most biological molecules possess molecular asymmetry, that is, their mirror images

are not identical. Such molecules are said to be chiral. Probably the most well-known

example is a carbon atom that is tetrahedrally bonded to four different atoms or groups

of atoms. This example is described in organic chemistry textbooks and will not

be dwelled on here. Less obvious examples of importance in biology are macro-

molecules that possess chirality. For example, helices can be wound in a left- or

right-hand sense. The most common helix in proteins, the 𝛼-helix, is wound in a

right-hand sense. Although most polynucleotides are wound in a right-hand sense,

helices that wind in a left-hand sense also exist.

Chiral molecules can be distinguished by their interactions with polarized light.

As we have discussed in Chapter 7, a light wave can be described as an electromag-

netic sine wave with a characteristic frequency. In this description, a wave generating

an electric field is perpendicular to a wave generating a magnetic field. If light is

unpolarized, these waves are oriented randomly in space, as shown schematically in

Figure 11-1. Looking along the electromagnetic wave, the random orientations look

like the spokes of a wheel. For linearly, or plane, polarized light, the wave is oriented

in only one direction, as depicted in Figure 11-1. Although the polarized light in the

figure looks like a line (linearly polarized), the electric field wave is projected as a

plane (plane polarized) so that the two terms are used interchangeably. When a chiral

molecule interacts with plane polarized light, the plane is rotated, with the direction

and amount of rotation depending on the characteristics of the molecule.

Circularly polarized light sweeps out a circle as the electric wave propagates. The

circle can be either right handed or left handed, as shown in Figure 11-1. The conven-

tion used is that if the circle moves clockwise, it is right handed, whereas if it moves

counterclockwise, it is left handed. The interaction of circularly polarized light with

chiral molecules will alter the circularly polarized light. Elliptically polarized light

is also used and is essentially the same as circularly polarized light, but an ellipse

is swept out by the electric field wave instead of a circle. We will not dwell on how

polarized light is produced, except to note that light can be polarized when it is passed

Physical Chemistry for the Biological Sciences, Second Edition.
Gordon G. Hammes and Sharon Hammes-Schiffer.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

253



254 CD, ORD, AND FLUORESCENCE POLARIZATION
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Circularly
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z z

x x

y y

FIGURE 11-1. Diagrams of the electric field components of unpolarized, linearly or plane

polarized, and circularly polarized light. The light is moving along the y-axis. The arrows

indicate the directions of the electric field. For unpolarized light, all directions occur, whereas

for linearly or plane-polarized light only the z direction is found. For circularly polarized light,

the direction of rotation can be clockwise or counterclockwise.

through certain materials. A pair of polaroid sunglasses is a good example of how

light can be polarized.

The interaction of a chiral molecule with polarized light is very specific and has

proved to be an important method for characterizing both small molecule and macro-

molecular structures. Small molecule examples should be already well known to you.

Amino acids in most biological systems are levo rotary (l), that is, they rotate plane

polarized light to the left, and sugars have various optical isomers. Enzymes, in fact,

can distinguish between optical isomers and typically will only react with a single or

a restricted group of small molecule isomers. Essentially, two types of measurements

are commonly made to determine the effects of molecules on polarized light: optical

rotation and circular dichroism (CD). Optical rotation is a measure of the rotation of

linearly polarized light by a molecule, and the wavelength dependence of the opti-

cal rotation is called optical rotary dispersion (ORD). CD, on the other hand, is the

difference in absorption of left-hand and right-hand circularly polarized light. These

effects are relatively small but can be measured readily with modern instrumenta-

tion. For a typical protein or nucleic acid with a 100 μM solution of chromophore,

the polarized light plane with a wavelength around the electronic absorption maxima

is rotated about 0.001 – 0.1 degrees for a sample 1 cm thick. For CD, the difference

in absorption coefficients is about 0.03 – 0.3% of the total absorption.

11.2 OPTICAL ROTARY DISPERSION

The first studies of the optical properties of biological macromolecules were done

with ORD because adequate equipment was not available for CD measurements. At

the present time, the opposite is true: CD is the method of choice. Nevertheless, it is

instructive to discuss both methods. As we shall see later, they are intimately related.
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FIGURE 11-2. Schematic diagram of an ORD apparatus. The light is linearly polarized and

the polarization plane is rotated by the sample. A second polarizer, the analyzer, can be rotated

to obtain the maximum (or minimum) light intensity. The angle of rotation of the analyzer is a

direct measure of the angle of rotation by the sample. For CD, circularly polarized light is used,

and the difference in absorbance between left and right circularly polarized light is measured.

A typical experimental setup for measuring ORD is shown in Figure 11-2. The

principle is that plane-polarized light is passed through the sample, and the rotation

of the plane of polarization of the light by the sample is measured. The analyzer

for the emergent beam is an element that polarizes the beam. It can be rotated until

the light intensity after the analyzer disappears. Its polarization axis is then perpen-

dicular to the direction of polarization of the beam emerging from the sample. The

amount of rotation required for this disappearance is a direct measure of how much

the original beam was rotated by the sample. Clockwise rotation is assigned as pos-

itive rotation and counterclockwise as negative rotation. The physical origin of this

rotation is the fact that the sample is circularly birefringent, that is, the refractive

index of the sample is different for left-hand circularly polarized light and right-hand

circularly polarized light. A plane-polarized beam of light can also be described as

two opposite circularly polarized beams. A difference in the refractive index means

that the speed at which the light passes through the sample is different for right-hand

and left-hand circularly polarized light. This means the two polarized beams get out

of phase as they pass through the sample. This phenomenon is described in Chapter 7.

This phase difference is manifested as a rotation of the light.

If the measured angle of rotation is 𝛼, then the specific rotation, [𝛼], is defined as

[𝛼] = 𝛼

dc
(11-1)
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where c is the concentration in g/cc and d is the path length in decimeters. The origin

of this definition lies in the history of optical rotation: the first measurements of opti-

cal rotation were made in cells that were 10 cm (1 dm) long. Instead of the specific

rotation, data are often reported as the molar rotation, [𝜙], which is defined as

[𝜙] = 100𝛼

lM
(11-2)

where l is the path length in centimeters and M is the concentration in mol/l. (For

macromolecules, the concentration is often given in terms of the monomers.)

11.3 CIRCULAR DICHROISM

Materials display CD because the absorbance of left and right circularly polarized

light is different for molecules with molecular asymmetry. One measure of the CD

is simply the difference in absorbance of the material for left and right circularly

polarized light, ΔA:

ΔA = AL − AR (11-3)

Circular dichroism can arise only in the spectral region where absorbance occurs—if

the absorbance is essentially zero, there cannot be a measurable difference. For ORD,

on the other hand, large rotations are measured in the regions where the sample

absorbs light, but measurable rotation also occurs when the absorbance is essentially

zero. This is helpful, for example, when looking at the optical activity of substances

such as sugars, for which the absorbance is in the far ultraviolet. The large optical

rotations in regions of high absorption are called Cotton effects.

As previously discussed, optical rotation arises because of the phase shift of the

circularly polarized light that leads to circular birefringence. Circular dichroism arises

because not only does the phase shift but there also is a differential decrease in the

amplitude for right and left circularly polarized light. This leads to elliptical polariza-

tion. As with optical rotation, circular dichroism can be either positive or negative.

Circular dichroism is reported either as a differential extinction coefficient,

Δ𝜀 = 𝜀L − 𝜀R = ΔA
lM

(11-4)

or more often as the ellipticity, 𝜃:

𝜃 = 2.303ΔA
180

4𝜋
degrees (11-5)

As before, the molar ellipticity is

[𝜃] = 100𝜃

lM
(11-6)
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Despite this definition of [𝜃], it is usually reported in the units of deg cm2 dmol−1

because of the historical precedents. The differential extinction coefficient and the

specific rotation are related by the relationship

[𝜃] = 3300Δ𝜀 (11-7)

The numerical coefficient follows from the Beer–Lambert law for absorption and the

various relationships in previous equations.

Since ORD and CD arise from the same physical phenomena, namely the effect

of molecular asymmetry on polarized light, one might imagine that the two should

be closely related. In fact, these two measurements are not independent: if the optical

rotation is known, the circular dichroism can be calculated and vice versa. Although

the formal equations for these transformations are well known, in practice the math-

ematics are sufficiently difficult so that this transformation is rarely done. In fact, CD

is the experimental method of choice for a variety of reasons, mostly because circular

dichroism is only found at absorption bands so that the interpretation of the spectra

is somewhat easier.

11.4 OPTICAL ROTARY DISPERSION AND CIRCULAR DICHROISM OF
PROTEINS

The simplest model for the optical activity of a protein is to assume that the optical

activity is the sum of the optical activity of the individual amino acids. This model

is clearly incorrect: the sum of the optical activity of the amino acids is usually very

small relative to the measured optical activity of a protein. This observation is not sur-

prising: We saw previously that the ultraviolet spectra of proteins were primarily due

to the peptide bonds. Similarly, the optical activity of proteins is primarily due to the

macromolecular structure itself. In fact, specific protein structures have characteristic

ORD and CD spectra.

Three of the fundamental structures of proteins are the 𝛼-helix, the 𝛽-sheet, and

the random coil (cf. Chapters 3 and 9). The 𝛼-helix is a right-hand helix stabilized

by short-range hydrogen bonds between backbone peptide bonds, whereas the

𝛽-sheet structure is composed of parallel polypeptide chains, also stabilized by

hydrogen bonds between the backbone peptide bonds (Figs. 3-4 and 3-5). The

random coil is envisaged as a random arrangement of the backbone although it is

rarely random—irregular might be a better term. The ORD and CD spectra of many

different homopolypeptide chains have been determined under experimental con-

ditions where the structures are known. The results are summarized in Figure 11-3

(1). Within relatively small deviations, the spectra are the same for the common

structures of the homopolypeptides. Note that, as expected, the CD is centered

around the ultraviolet absorption spectra of the proteins. Also note that the spectra

are reasonably distinct for these three different structures.

If the assumption is made that only 𝛼-helix, 𝛽-sheet, and random coil structures are

present and these three structures have known optical properties, it should be possi-

ble to develop algorithms to deconvolute the ORD and CD spectra of a given protein.
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FIGURE 11-3. ORD (dotted) and CD (crosshatched) of homopolypeptides in the random

coil, 𝛼-helix, and 𝛽-sheet conformations. The range of values found is indicated by the shaded

areas. Reproduced with permission from W. B. Gratzer and D. A. Cowburn, Nature 222, 426

(1969).

The implicit assumption in these algorithms is that ORD and CD spectra of the three

different structures are additive; that is, the presence of one structure does not influ-

ence the contributions from another structure. Thus, measurement of the ORD or CD

spectrum over the wavelength region of 175–250 nm would permit the calculation

of the fraction of the protein structure present in each of the three conformations. A

number of attempts have been made to do this, and the results have been compared

with known crystal structures (cf. Ref. 2). In some cases, crystal structures have been

used to derive a set of self-consistent parameters, assuming that the crystal and solu-

tion structures are identical. Reasonable agreement between the calculated structures

and the actual structures is often found, but the calculations are not quantitative for

several reasons. First, the optical properties of homopolymers are not accurate pre-

dictors of the optical properties of the protein. The ORD and CD spectra depend on

the microenvironment of each residue, so that they will certainly be dependent on

the specific sequence and size of the protein. Second, protein structures are not so

simple that their domains can be described by the three relatively simple structures

assumed for the algorithms. Other structures that can influence CD and ORD spectra

include various helices other than the 𝛼-helix, disulfide bonds, and various 𝛽-turns.

Many of the fitting algorithms include structures other than the three discussed here.

Finally, the side chains of amino acids influence the spectra—this is particularly true

at wavelengths above about 250 nm where tyrosine, phenylalanine, and tryptophan

have strong absorption bands. Prosthetic groups, such as hemes, would have a simi-

lar effect at the wavelength where they have strong absorption bands. Nevertheless,

ORD and CD spectra are useful semiquantitative predictors of protein structure and
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also serve as good indicators of structural changes that may occur as experimental

conditions are changed (cf. Ref. 3, 4).

11.5 OPTICAL ROTATION AND CIRCULAR DICHROISM OF NUCLEIC
ACIDS

The bases of nucleic acids are not intrinsically optically active; however, the sugars

are optically active and can induce optical activity in the bases. This optical activity

is relatively small, but as might be anticipated from the discussion of proteins, the

ORD and CD spectra of nucleic acids are not just the sum of those of the monomers.

In fact, CD and ORD are very good indicators of secondary structure such as helices

and are the method of choice for following changes in secondary structure. As an

example, consider polyadenylic acid (polyA) (5). As shown in Figure 11-4, at neutral

pH and room temperature, native polyA has a very large ellipticity due to the fact that

it exists in a helical structure. If the structure is destroyed by raising the temperature

or going to extremes of pH, the ellipticity essentially disappears. Also shown in the

figure is the ellipticity of adenylic acid, which is quite small. The ORD and CD of
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FIGURE 11-4. Circular dichroism of adenylic acid, denatured polyadenylic acid, and native

polyadenylic acid. D. Freifelder, Physical Biochemistry, 2nd edition, Freeman, New York,

1982, p. 594. © 1976, 1982 by Freeman. Used with permission.
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FIGURE 11-5. The CD of E. coli DNA in its native form at 20∘C (—), heat denatured form

at 60∘C (- -), and the average CD of the four deoxynucleotides (… ). From C. A. Sprecher

and W. C. Johnson, Jr., Biopolymers 16, 2243 (1977). Reprinted with permission of Wiley ©

1977.

single-stranded polynucleotides have been extensively studied. The large ellipticity

is primarily due to the interactions of the nearest neighbors, that is, adjacent bases.

They are stacked on top of each other, and this stacking is primarily responsible for

the altered optical properties of the helical structures. To a good approximation, the

ORD and CD properties of a base are influenced only by their nearest neighbors.

Consequently, the spectra of polymers can be readily simulated by adding together

the spectrum of each base, taking into account nearest neighbor interactions only.

The situation is much more complex for double-stranded nucleic acids such as

DNA, and structural predictions are much more difficult, but CD and ORD are still

useful tools. As an example, the CD of E. coli DNA is shown in Figure 11-5 for both

the native and denatured forms (6). Although structural predictions from ORD and

CD spectra are difficult, it is true, nevertheless, that specific structures of DNA and

RNA have very characteristic spectra, and changes in the spectra are good monitors

of structural changes (cf. Ref. 3, 4).

11.6 SMALL MOLECULE BINDING TO DNA

DNA is an obvious target for drug intervention since disruption of its structure clearly

will have significant biological implications. The negatively charged phosphate
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FIGURE 11-6. Schematic diagram of the intercalation of ligands between the bases, and in

the minor and major grooves of a DNA double helix. From M. Ardhammar, B. Norden, and T.

Kurucsev in Circular Dichroism: Principles and Applications (N. Berova, K. Nakanishi, and

R. W. Woody, eds.), 2nd edition, Wiley, New York, 2000, p. 746. Reprinted with permission

of Wiley © 2000.

groups along the backbone structure of DNA can bind small molecules through

electrostatic interactions, but the major sites of drug binding in double-stranded DNA

are the major and minor grooves in the double helical structure and intercalation

between the bases. These three modes of binding are shown schematically in

Figure 11-6 (7). Many of the drugs used contain aromatic rings, and as a specific

example of such binding, we consider the interaction of DNA with acridine orange,

even though acridine orange is not actually a drug (8).

The structure of acridine orange is shown in Figure 11-7. It is not optically active

by itself, but binding to DNA induces optical activity into the molecule. This is

because binding causes the electronic energy states of achiral acridine orange to

be coupled with the electronic energy states of chiral DNA. Induced optical activ-

ity is quite common when achiral small molecules bind to chiral macromolecules.

The CD spectra of acridine orange bound to DNA are shown in Figure 11-7 for var-

ious ratios of [bound dye]/[DNA] (8). As expected, the optical activity is centered

around the electronic absorption band of acridine orange, which has a maximum at

about 430 nm. At very low values of [bound dye]/[DNA], a negative value of Δ𝜀
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American Chemical Society.

is observed, but as this ratio increases, a large positive band develops. At the high-

est ratio shown, both strong negative and positive bands are observed. A molecular

interpretation of these results has been developed. At very low concentrations of acri-

dine orange, the binding is through intercalation between the bases, with the acridine

orange ring structure parallel to the bases. This produces a negative induced circu-

lar dichroism with a maximum Δ𝜀 of about −8M−1 cm−1. As the concentration of

the ligand increases, the dye binds to the groove which induces a positive CD with a

maximum value of about 60M−1 cm−1. These two induced CD signals are enhanced

at higher dye concentrations due to interactions between the electronic energy levels

of the bound dye molecules.
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This example illustrates the exquisite sensitivity of the CD spectrum to the nature

of the binding process and to the secondary structure of the DNA. Studies with many

different types of ligands have been carried out (cf. Ref. 7).

11.7 PROTEIN FOLDING

Understanding protein structure in molecular terms is a long-standing goal of

biochemistry. While great progress has been made toward this goal, we still cannot

predict the three-dimensional structure of a protein from a knowledge of the

one-dimensional sequence of amino acids that make up a protein. One approach

to this end is to study the folding and unfolding of proteins with the rationale

that understanding these processes will provide a better understanding of protein

structure. In addition, understanding the folding of proteins is of great physiological

significance because proteins are synthesized unfolded in vivo and must be folded

into specific structures in order to perform their biological activities. Protein folding

already has been briefly discussed in Chapter 3. Many reviews of protein folding

are available (cf. Ref. 9, 10), and only one particular example is presented here. CD

and ORD are particularly useful tools for the study of protein folding and unfolding

because they are extremely sensitive to the secondary and tertiary structure of

proteins so that large changes are generally seen as a result of the folding process.

Traditionally, proteins were thought to be synthesized and then immediately folded

into their biologically active form. However, in recent years, a number of examples

have emerged in which the unfolded form exists in vivo until it is folded into its bio-

logically active form by specific conditions in the external environment such as the

presence of a specific ligand. The biological significance is not understood, but the

evidence for such structures is quite convincing. An example of this phenomenon

is the protein associated with the ribozyme ribonuclease P (11). Ribonuclease P is a

ribonucleic acid (RNA) catalyst, previously described in Chapter 6. Its activity and/or

specificity is enhanced by the binding of the catalytic RNA to a protein, and the pro-

tein is essential for in vivo catalysis (12). We will not discuss the catalytic reaction

itself which is the processing of the 5′-leader sequences from precursor tRNA. This

ribozyme is quite ubiquitous in nature: in bacteria, the complete catalytic unit consists

of a single RNA of about 400 nucleotides and a single protein of about 120 amino

acids.

When the protein from B. subtilis is isolated, it is unfolded at physiological temper-

atures in the absence of ligands (13). This can be ascertained from the CD spectrum

in sodium cacodylate (pH 7), which does not bind to the protein. The spectrum of

the protein in the far and near ultraviolet is shown in Figure 11-8. The far-ultraviolet

spectrum is due to the protein backbone whereas the near-ultraviolet spectrum is pri-

marily due to tyrosine residues in the protein. Included in Figure 11-8 are the spectra

in the presence of 10 or 20 mM sulfate. An obvious change in the spectrum occurs.

The far-ultraviolet spectrum is consistent with the known crystal structure of the pro-

tein, which contains 𝛼-helices and 𝛽-sheets, and the near-ultraviolet spectrum changes

because the electronic environments of the tyrosines are altered.
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The change in structure can be quantified by measuring the change in the CD at

222 nm as a function of the ligand concentration. This is shown for a variety of ligands

in Figure 11-9. A variety of anions cause the protein to go from a disordered struc-

ture to a more folded structure, with highly charged anions such as polyphosphates

being more effective than monovalent ions such as chloride. The stoichiometry of the

ligand binding was determined for pyrophosphate and was found to be 2 pyrophos-

phates/protein. A simple model that explains the observations is that the ligand binds
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Reproduced with permission.

to the folded protein but not the unfolded protein. The apparent equilibrium constant,

Kapp, for the ratio of the denatured (unfolded) protein, D, to the native state (folded)

protein, N, can be obtained directly from the data in Figure 11-9 if the assumption is

made that only two forms of the protein exist, folded and unfolded. For example, the

apparent equilibrium constant is unity when the change in the CD is half of the total

change. The apparent equilibrium constant at any point on the curve is given by

Kapp =
(𝜃L − 𝜃D)
(𝜃N − 𝜃L)

= ΣN
ΣD

(11-8)

where 𝜃’s are the absolute values of the circular dichroism in the figure for a given

ligand concentration, L, the denatured form, D, and the native form, N. The summa-

tion is over all liganded forms of the denatured and native proteins. If the ligand is

assumed to bind to two independent and equivalent sites, the folding mechanism can

be written as

D
Kfold−−−−⇀↽−−−−N + 2L

Ka−−−−⇀↽−−−−NL + L
Ka−−−−⇀↽−−−−NL2 (11-9)

This mechanism gives

Kapp =
[N] + [NL] + [NL2]

[D]
=

[N](1 + [NL]∕[N] + [NL2]∕[N])
[D]

= [N]
[D]

(1 + 2Ka[L] + K2
a[L]2) = Kfold(1 + Ka[L])2 (11-10)
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where Kfold = [N]/[D] and Ka is the microscopic association constant for the binding

of ligand to the native protein (Ka = [NL]/(2[N][L])= 2[NL2]/([NL][L]). The concept

of microscopic association constants is considered more extensively in Chapter 17.

The two constants Kfold and Ka cannot be determined independently from the data

in Figure 11-9. However, an independent method, which will not be described here,

gives an estimated value of 0.0071 for Kfold at 37∘C. With this value in hand, it is

possible to calculate the microscopic association constants for the ligands.

This example illustrates two important concepts. First, it shows that measurement

of the CD provides a means of following the transition between the denatured and

native state of proteins. Second, it shows how the binding of a ligand to the native

state can convert the denatured protein to its native structure. (Coupled equilibria are

common in biological systems.) These concepts are of both practical and theoretical

value for studying and understanding biochemical processes.

11.8 INTERACTION OF DNA WITH ZINC FINGER PROTEINS

Zinc finger motifs are found in proteins that regulate transcription. As the name

implies, the structure is a finger consisting of a loop of 𝛽-structure with two cysteines

and an 𝛼-helix with two histidines. The four side chains of these amino acids tightly

bind a zinc ion, as shown schematically in Figure 11-10. Transcription factors

contain multiple “fingers,” and the 𝛼-helix of each finger binds in the major groove

of double-stranded DNA, thereby regulating transcription. The interaction of zinc

finger proteins with DNA has been extensively studied. For example, the interaction

Cys
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His
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(a) (b)

c

c

H
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H

FIGURE 11-10. Schematic drawing of the Zn finger structure. (a) Coordination of Zn to

cysteine and histidine ligands. (b) Secondary structure. Reprinted from R. M. Evans and

S. M. Hollenberg, Zinc fingers: gilt by association, Cell 52, 1(1988). © 1988, with permission

of Elsevier.
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of a transcription factor that regulates the expression of the protein metallothionein

in mouse and human cells with DNA has been studied using CD (14,15). The

transcription factor contains six zinc fingers, which were isolated from the rest of

the transcription factor. Preparations contained three to six fingers. The six-finger

protein binds three zinc ions very tightly, and far-ultraviolet CD spectra showed

that the conformation of the protein was unchanged once the three tight binding

sites were occupied by zinc, although three additional zinc ions were bound more

weakly.

The binding of the isolated zinc fingers to a 23-mer DNA that contains the

sequence involved in the regulatory process was studied with CD. As the number

of zinc fingers was increased from 3 to 6, a negative ellipticity at about 210 nm

decreased in magnitude (approached zero) with a concomitant increase in a positive

ellipticity at 280 nm. This change is not due to the protein, whose CD spectrum was

subtracted from the experimentally determined spectrum. It is due to a change in the

DNA structure from the B to A form. The B form of DNA is the structure stable at

high humidity and is the form most prevalent in cells, whereas the A form is stable at

lower humidity. The A form is characterized by a tilting of the base pairs relative to

the axis of the helix and a change in the position of the sugars. This change in DNA

structure appears to be a general consequence of binding zinc fingers and is thought

to be involved in the regulation of transcription. The A and B forms of DNA have

somewhat different CD spectra, which make it possible to interpret the CD changes

associated with zinc finger binding in structural terms.

The interaction of many different proteins and nucleic interactions have been

probed with CD (14). These interactions are of great physiological importance, and

CD has proved to be a valuable tool for probing the structural changes that occur.

11.9 FLUORESCENCE POLARIZATION

With the introduction of the concept of polarized light, we can introduce an interest-

ing phenomenon observed with fluorescence. Normal fluorescence experiments are

not carried out with polarized light so the fluorescence observed also is not polarized.

However, if the light used for excitation of fluorescence is polarized, then the fluo-

rescence emitted is also often polarized. The basic idea is not hard to understand: if

the electric field wave is oriented in space, it will interact with the electric dipole of

the molecule, and this interaction can ultimately lead to the absorption of energy and

fluorescence. The polarization of the light emitted will depend on the relative orien-

tation of the electric field and the electric dipole and how much it changes during

the fluorescence process. (The polarization of the emitted light is determined by the

“transition dipole,” which is generally oriented differently than the electric dipole.)

Now let us consider what happens with a population of molecules interacting with

polarized light.

The experiment itself is straightforward. A polarizer is put in front of the excita-

tion beam so that molecules are excited with polarized light. A second polarizer is

put in front of the detector for the emitted light. Two measurements are made: the
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intensity of the emitted light with the axis of the detection polarizer parallel to the

polarization axis of the excitation polarizer, I∥, and the intensity when the two axes

are perpendicular, I
⊥

. The polarization, P, is defined as

P =
(I∥ − I

⊥
)

(I∥ + I
⊥
)

(11-11)

If the emitted light is completely unpolarized, the parallel and perpendicular inten-

sities would be identical and the polarization would be zero. This would happen if

the molecules rotate very rapidly during the time that the fluorescence occurs. Since

typical fluorescence lifetimes are in the range of 1–100 ns, this would mean that

the molecules would have to rotate many times during this relatively short lifetime.

This is, in fact, what happens for small molecules where polarization is usually not

observed. The opposite extreme is the case when the molecules do not rotate at all

during the lifetime of the fluorescence but are randomly oriented in space. This would

be the situation, for example, in extremely viscous solvents. The calculation for this

situation is somewhat complex, but can be done. For this limit, the polarization is 1∕2.

For some macromolecules and ligands bound to macromolecules, the rate of rotation

of the fluorescent species is comparable to the fluorescent lifetime. For such cases,

the polarization lies between 0 and 1∕2, and measurement of the polarization gives

information about the rate of rotation of the fluorophore.

The time dependence of the polarization will provide quantitative information

about the rate of rotation of fluorescent molecules. Usually, the data are analyzed

in terms of the anisotropy, A, rather than the polarization, although the two are con-

ceptually equivalent. It turns out the anisotropy, defined as

A =
(I∥ − I

⊥
)

(I∥ + 2I
⊥
)

(11-12)

is more easily related to rotational motion. If the time dependence of the fluorescence

is measured for the parallel and perpendicular components, the time dependence

of the polarization can be calculated. These are not easy measurements since fluo-

rescence decays in nanoseconds. Theoretical considerations show that for a simple

rotation

A(t) = A(0) exp

(
−t
𝜏c

)
(11-13)

where t is the time, A(0) is a constant, and 𝜏c is the rotational correlation time and

is related to the rotational diffusion constant, Drot, by 𝜏c = 1∕(6Drot). For example,

the rotational correlation time for a fluorescent derivative of chymotrypsin is 15 ns,

which is typical for small proteins. The rotational correlation time becomes longer as

the molecular volume of the macromolecule increases, so that it is a direct measure

of the size of the macromolecule. The exact relationship is complex, as both molec-

ular weight and shape are important. If more than one mode of rotation is possible,

multiple exponential decays may be observed.
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Polarization and/or anisotropy provide information about the orientation and rota-

tional freedom of fluorescent molecules. This, in turn, can often provide useful infor-

mation about biological structures and mechanisms.

11.10 INTEGRATION OF HIV GENOME INTO HOST GENOME

HIV is a retrovirus that is unfortunately well known to everyone. In order for the

virus to infect its host, the HIV genome must be integrated into the host genome.

This integration is quite complex: it involves processing the HIV DNA, strand trans-

fer, and DNA repair. Integrase is the enzyme responsible for the 3′-processing and

strand transfer. These reactions can be monitored in vitro with short oligonucleotides

that are models for the end of the viral DNA. The catalytic core of the enzyme rec-

ognizes a specific sequence of DNA. The self-association of integrase appears to be

important for its function. The oligomeric state of integrase bound to viral DNA can

be monitored through time-resolved fluorescence anisotropy measurements (16). It is

a useful tool for this purpose because very low protein and DNA concentrations can

be monitored, and the rotational correlation time is directly related to the size of the

macromolecule.

The rotational correlation time for integrase was determined by monitoring the

time decay of tryptophan fluorescence. The rotational correlation time decreased from

about 90 ns to 20 ns at 25∘C as viral-specific DNA, a 21-base sequence, was added.

This was attributed to association of integrase with the DNA. The concentration of

integrase was only 100 nM in these experiments. Independent studies of integrase

established that the rotational correlation time in the absence of DNA was associated

with a tetrameric structure of the protein. The actual situation is a bit more complex

than this, as some other aggregates are present, but the dominant species is a tetramer,

which becomes even more predominant at 37∘C. The rotational correlation time of

the 21-mer DNA duplex was determined by modifying the DNA with fluorescein.

The dominant rotational correlation time is about 2 ns. A much faster rotational cor-

relation time is also observed due to rotation of fluorescein within the DNA. Multiple

rotational correlation times are commonly observed so that it is necessary to establish

what is being measured on a molecular basis. As the fluorescein-labeled DNA was

titrated with integrase, an additional rotational correlation time of about 15 ns was

observed. This rotational correlation time is attributed to the complex formed and

is consistent with that determined from measurement of the correlation time associ-

ated with the tryptophan fluorescence. The rotational correlation time for monomer

integrase, molecular weight 32,000, is 16 ns.

These elegant experiments with the integrase–DNA complex, and the many con-

trol experiments, demonstrate that the integrase depolymerizes when it binds to DNA.

Furthermore, the predominant binding state at 25∘C is monomeric, whereas at 37∘C
a mixture of monomers and dimers is present. This raises the interesting question as

to what is the active oligomeric state of integrase. Prior to this study, the prevailing

mechanism was thought to involve a multimeric structure of integrase. These results

suggest that in vitro monomers and dimers may be enzymatically active, although the
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in vivo activity, which is considerably more complex, probably involves structures

larger than dimers.

11.11 𝛼-KETOGLUTARATE DEHYDROGENASE

The 𝛼-ketoglutarate dehydrogenase complex from E. coli contains three enzymes that

catalyze the overall reaction

𝛼-ketoglutarate + CoA + NAD+ → succinyl-CoA + CO2 + NADH + H+ (11-14)

The first enzyme decarboxylates the 𝛼-ketoglutarate. The intermediate formed with

thiamine pyrophosphate transfers the succinyl moiety to lipoamide, and this interme-

diate is oxidized to form a succinyl–lipoic acid intermediate. The succinyl group is

transferred to CoA, and finally the dihydrolipoamide is oxidized. This last reaction

involves an enzyme-bound flavin and reduces NAD+ to NADH. The multienzyme

complex has a molecular weight of about 2.5 × 106 and contains 12 copies of the

first enzyme, 24 copies of the second, and 12 copies of the third (17). The interme-

diates in the reaction sequence are bound to lipoamide, that is, lipoic acid covalently

attached to a lysine through an amide linkage. The structure of lipoic acid is shown in

Figure 11-11. It can exist in an oxidized form with a disulfide at the end of the chain, or

in a reduced form with two sulfhydryl groups. The proposed mechanism involves the

reduced lipoic acid-bound intermediates moving between the active sites of the three

enzymes. Two questions arise: Are the active sites close enough to permit lipoic acid

to span the distances between the active sites, and does the lipoic acid rotate between

the active sites fast enough for the reaction to proceed efficiently? Answers to both

of these questions can be obtained with fluorescence methodology.

Fluorescence resonance energy transfer measurements between the active sites of

the three enzymes show that they are about 3 nm apart, approximately the maximum

span of a lipoic acid (18). Other experiments showed that succinyl and electron trans-

fer between lipoic acids can occur, so that the potential distance an intermediate can

be transferred is longer than a single lipoic acid. Thus, the energy transfer measure-

ments demonstrated that the transfer of intermediates occurs over a relatively long

distance and that lipoic acid is a viable intermediate.

S S

CH2

CH2

H2C

H2C

CHCH2CH2CH2CH2C

O
Oxidized
lipoic acid

Reduced
lipoic acid

O–

CHCH2CH2CH2CH2C

O

O–

HS HS

FIGURE 11-11. Structures of oxidized and reduced lipoic acid.
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Does the lipoic acid rotate fast enough to serve the postulated transfer function?

This is not an easy question to answer because no easy method exists for measuring

the rate of rotation. However, fluorescence anisotropy measurements provide some

insight into this rate (19). The lipoic acid was labeled with a fluorescent probe on the

sulfhydryl that normally carries a reaction intermediate. The fluorescence lifetime

of the probe and the dynamic fluorescence anisotropy were then measured. A typical
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FIGURE 11-12. Time course of the fluorescence (b) and anisotropy (a) decay of pyrene cova-

lently attached to the lipoic acid of E coli 𝛼-ketoglutarate dehydrogenase. Reprinted in part

with permission from D. E. Waskeiwicz and G. G. Hammes, Biochemistry 22, 6489 (1982). ©

1982 by American Chemical Society.
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time course for the fluorescence and anisotropy is shown in Figure 11-12. As might be

expected, the dynamic fluorescence anisotropy is quite complex. Three components

are found. One has a very long rotational correlation time and is due to the overall rota-

tion of the very large multienzyme complex. The second component has a rotational

correlation time of about 25 ns and is due to local rotation of the fluorescent probe

in a hydrophobic environment. Rotational correlation times of this magnitude have

been observed often for local motion of ligands bound to macromolecules. The third

component has a rotational correlation time of about 350 ns. This can be attributed to

rotation of lipoic acid between the catalytic sites. This component of the anisotropy

decay is not seen if the enzyme to which the lipoic acid is bound is separated from

the other two enzymes. It cannot be ascertained whether the rate-limiting process is

the actual rotation or dissociation of the probe from one of the catalytic sites, but in

any event these results establish that the rate of rotation is sufficiently fast to support

the observed catalytic rate, namely a turnover number of about 130 s−1.
The uses of fluorescence anisotropy to probe the biological mechanisms discussed

earlier are intended as illustrative examples of the unique information that can be

obtained. They also illustrate the difficulty of interpreting the results that are obtained.

As with any physical method, great care must be taken to explore all possible expla-

nations, and careful control experiments are required.
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PROBLEMS

11-1. The sugar d-mannose can exist as two enantiomers that rotate light in opposite

directions. The (+) configuration has a specific rotation of 29.3∘ d−1 g/cc at

589.3 nm, 20∘C, whereas the (−) configuration has a specific rotation of−17.0∘
d−1 g/cc at the same wavelength. When either pure enantiomer is put into water,

the optical rotation changes until a specific rotation of 14.2∘ d−1 g/cc is reached.

Calculate the ratio of (+) and (−) enantiomers at equilibrium.

11-2. Solutions of RNA and DNA at a concentration of 2.00 × 10−5 M nucleotides

(monomers) have the following differential absorption characteristics in a 1-cm

cell:

𝜆 (nm) AL−AR, DNA AL−AR, RNA

240 −4.40 × 10−4 0.00

260 0.00 12.0 × 10−4

280 6.00 × 10−4 3.20 × 10−4

300 0.20 × 10−4 −1.00 × 10−4

a. Calculate 𝜀L − 𝜀R for the DNA and RNA at each wavelength.

b. Calculate the molar ellipticity for DNA and RNA at each wavelength.

c. A mixture of the DNA and RNA has the following differential absorption

characteristics.

𝜆 (nm) AL − AR

240 −0.53 × 10−4

260 4.00 × 10−4

280 1.05 × 10−4

300 −0.31 × 10−4

What are the concentrations of DNA and RNA in the mixture?

d. If the DNA and RNA are hydrolyzed to give the individual nucleotides, will

the molar ellipticity increase, decrease, or remain the same?

11-3. A common feature of many DNA binding proteins is the “leucine zipper.” It

is two similar sequences of 30–35 amino acids containing multiple leucines.

Each sequence forms a right-handed 𝛼-helix, and the two helices wrap around
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each other to form a left-handed super helix. A number of studies have been

carried out of this “coil–coil” structure with model peptides. In one such study,

the circular dichroism spectrum at 0∘C had a large positive peak at 195 nm and

negative minima at 208 and 222 nm. This was interpreted as being the spectrum

of a completely helical structure.

a. At 0∘C, the molar ellipticity at 222 nm is−33,000 deg cm2 dmol−1. At 80∘C,

the molar ellipticity at 222 nm is essentially zero. Interpret this result.

b. At 55∘C, the molar ellipticity at 222 nm is −16,000 deg cm2 dmol−1. What

percentage of the peptide is 𝛼-helical at this temperature?

c. For some model systems, it is found that the temperature at which the

ellipticity approaches zero increases as the concentration of model peptide

increases. How would you explain this result?

11-4. Estrogen receptors are ligand-activated transcription factors that mediate the

effects of female sex hormone on DNA transcription. The interaction of estro-

gen receptors with a specific DNA fragment that binds the receptor and estra-

diol has been studied with circular dichroism [N. Greenfield, V. Vijayanathan,

T. J. Thomas, M. A. Gallo, and T. Thomas, Biochemistry 40, 6646 (2001)].

The circular dichroism spectrum was analyzed to show that the receptor is

approximately 75% 𝛼-helical, 3% 𝛽-sheet, 10% turns, and 12% random coil.

The following data were obtained for the ellipticity at 222 nm in the presence

and absence of the DNA and estradiol.

Ligand [𝜃]222, deg cm2 dmol−1

None −25,000

5 μM DNA −32,000

5 μM Estradiol −22,000

a. Assume that the specific rotation at 222 nm is due only to the 𝛼-helix and

that the receptor is saturated with the ligand. Indicate what is happening to

the structure of the receptor and calculate the percentage of helix when the

ligand is bound.

b. When the temperature is raised, the ellipticity at 222 nm approaches zero.

Explain what is happening to the structure of the receptor.

c. The temperature at which the difference between the initial and final ellip-

ticities has reached half of its value, Tm, is 38.0∘C in the absence of ligands.

It is 43.6∘C and 46.1∘C in the presence of 5 μM estradiol and 5 μM of the

specific binding DNA, respectively. Explain these results.

d. In the presence of 750 nM estradiol, Tm is 40.8∘C, Explain this result and

estimate the dissociation constant for the binding of estradiol to its recep-

tor protein with the assumption that the concentration of estradiol is much

greater than the receptor concentration. At 40.8∘C, the ratio of denatured
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protein to native protein was determined to be 1.20 in the absence of lig-

ands. (This is a hypothetical result as this result was not reported in the

publication.)

11-5. Adenosine monophosphate has an extinction coefficient of about 15,000 cm−1

M−1 at 260 nm, 0∘C. The value of 𝜀L − 𝜀R at 260 nm is about 2.00 cm−1 M−1.

The corresponding value of 𝜀L − 𝜀R for a polymer of polyrA is −17.0 cm−1

M−1 at 0∘C, and its magnitude decreases greatly as the temperature is raised.

(The monomer concentration was used in calculating this number.)

a. Explain the reason for the large difference in the differential extinction coef-

ficient between AMP and polyrA.

b. Why does the magnitude of the differential extinction coefficient decrease

as the temperature is increased?

c. Calculate the observed ellipticity in degrees for a 10−4 M solution of

AMP and for a 10−4 M solution of polyrAMP (monomer concentration) at

260 nm, 0∘C.

d. Calculate the absorbance of a 10−4 M solution of AMP. Would the

absorbance of the polyrA at the same concentration (0∘C) be greater than,

less than, or the same as the ATP solution?

11-6. The system for transport of mannitol across the Escherichia coli membrane

involves a membrane-bound enzyme that couples phosphorylation of the

sugar to its translocation through the membrane. Fluorescence lifetime and

anisotropy measurements have been carried out of the tryptophans in this

enzyme dissolved in detergent micelles. [D. Dijkstra, J. Broos, A. J. W. G.

Visser, A. van Hoek, and G. T. Robillard, Biochemistry 36, 4860 (1997)].

The fluorescence anisotropy decay of one of these tryptophans has two

components. The faster component, with a rotational correlation time of about

1 ns, is due to local motion of the tryptophan. The decay of anisotropy for the

slower component can be approximated by the following data.

Anisotropy Time (ns)

0.290 0.00

0.245 5.00

0.208 10.00

0.149 20.00

0.126 25.00

0.106 30.00

0.090 35.00

a. Calculate the rotational correlation time.
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b. The expected correlation time for the known molecular weight of the macro-

molecule is 120–140 ns. How do you explain the difference between the

calculated and observed correlation times?

c. When the protein is phosphorylated, the rotational correlation time

increases to 51 ns. What might be the cause of this change?



CHAPTER 12

Vibrations in Macromolecules

12.1 INTRODUCTION

Thus far, we have considered only spectral phenomena in the visible and ultraviolet

regions of the spectrum. In this spectral region, the interaction between light and

molecules causes transitions between energy levels of the electrons and alters the

populations of electronic energy levels. Molecules also have characteristic vibrational

motions that are influenced by much longer wavelengths, typically in the far red or

infrared. Since the energy associated with a given wavelength, 𝜆, is hc/𝜆, this means

that the difference in energy between levels is much smaller than that for the electronic

energy scaffold. (Recall that h is Planck’s constant and c is the speed of light.)

In principle, some type of coupling might be expected when transitions occur

between electronic and vibrational energy levels. However, this is not the case

because electronic transitions occur much more rapidly than the time scale of

nuclear motions—nuclei are quite sluggish compared to electrons (10−16 s vs. 10−13

s). Thus, the nuclei can be assumed to be stationary during an electronic transition.

This is called the Franck–Condon principle. The Franck–Condon principle is why

electronic transitions between vibrational energy levels of different electronic energy

states can be drawn as straight lines (Fig. 10-11).

An analysis of molecular vibrations utilizing quantum mechanics has been pre-

sented in Chapter 7. In this treatment, vibrational motion has been approximated by a

harmonic oscillator, that is, essentially atoms connected by springs. Before consider-

ing the experimental aspects of vibrational spectroscopy, the following salient points

should be recalled.

A detailed analysis of all of the 3N normal mode vibrations of a macromolecule is

not possible. Nevertheless, in some limiting cases, these normal modes are dominated

by the movement of a single or a restricted number of chemical bonds, for example,

a double bond between carbon and oxygen. In these cases, the normal mode has the

same signature frequency in different molecules.

The energy levels for the harmonic oscillator are given by the relationship

E =
(

n + 1

2

)
h𝜈 (12-1)
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where E is the energy, 𝜈 is the frequency, and n is the vibrational quantum number,

which is zero or a positive integer.

The characteristic frequency of the harmonic oscillator bond motion is

𝜈 =
(

1

2𝜋

)(
k
𝜇

)1∕2

(12-2)

where k is the spring constant, essentially a measure of the “stiffness” of the spring,

and 𝜇 is the reduced mass of the system, which is a weighted average of the masses

of the atoms involved in the normal mode. As shown by Eq. (12-1), the energy levels

are equally spaced with splittings of h𝜈. The larger the force constant k, the stiffer

the spring and the greater the splittings between the vibrational energy levels. For

the harmonic oscillator, quantum mechanical considerations only permit changes

in n of ±1.

As discussed in Chapter 7, for real molecules the vibrational motion deviates from

a simple harmonic model at high energies, and the energy levels become more closely

spaced at the top of the potential well. However, for most molecules at room temper-

ature, the harmonic oscillator is a good approximation for vibrational motions.

12.2 INFRARED SPECTROSCOPY

The difference in energy between different vibrational energy levels is about

100 J/mol. This corresponds to light in the infrared region, 𝜆 ∼1 mm. Wave numbers,

𝜈, are usually used when discussing vibrational spectra, rather than wavelength.

The wave number is simply the reciprocal of the wavelength. Quantum mechanical

calculations indicate that there are selection rules that govern the transitions between

vibrational energy levels. If absorption of light is to occur, the vibration must cause

a change in the electric dipole moment. Recall that a dipole moment is simply

a measure of the balance of charges within a molecule. For example, HCl has a

permanent dipole moment because H has a partial positive charge and Cl has a partial

negative charge. On the other hand, H2 does not have a permanent dipole moment

because no net imbalance in charge is present. From a practical standpoint, it is

important to note that water has a dipole moment and absorbs light in the infrared

very strongly. Consequently, it is very difficult to measure the infrared absorption of

macromolecules in water as the absorption–emission of the molecule is significantly

obscured by that of water. Sometimes, a combination of H2O and D2O can be used

to partially circumvent this problem, but it severely restricts the use of infrared

spectroscopy for biological systems. In some cases, dried and/or hydrated films are

used, although this is far from the conditions in the milieu of biology.

Two experimental methods are available for measuring infrared spectra. One is

essentially the same as the visible ultraviolet spectrometer previously discussed.

Infrared light is passed through the sample, and the absorption is measured. The only

difference is the light source, typically a glowing wire, and the detector, typically

a thermocouple. This method has been largely supplanted by Fourier transform
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methods. These methods were briefly described in Chapter 7. Basically, with Fourier

transform infrared measurements, a beam of light is split into two, with only half

of the light going through the sample. The difference in phase of the two waves

creates constructive and/or destructive interference and is a measure of the sample

absorption. The waves are rapidly scanned over a specific wavelength region of the

spectra, and multiple scans are averaged to create the final spectrum. This method is

more sensitive than the conventional dispersion spectrometer.

12.3 RAMAN SPECTROSCOPY

Another method exists for studying transitions between vibrational energy levels that

uses a concept not yet discussed. In addition to absorbing light, samples also scatter

light. The amount of scattered light is a maximum 90∘ to the direction of the inci-

dent beam. Most of the scattered light is at the same frequency as that of the incident

light. This is called Rayleigh scattering. At the molecular level, the electric field of

the light perturbs the electron distribution, but no transitions between energy levels

occur so that the molecule immediately returns to its unperturbed state. This scatter-

ing is inversely proportional to the fourth power of the wavelength so the scattering

is much greater at shorter wavelengths. This is essentially why the sky is blue: the

shorter wavelengths of the visible spectrum (blue) are scattered more than the longer

wavelengths (red). Rayleigh scattering is observed at all wavelengths. The intensity

of the scattered light is related to the polarizability of the molecule, that is, to how

easily electronic charge can be shifted within the molecule to make it more polar.

A small number of the molecules return to a different vibrational energy level after

scattering. The vibrational energy level can be either higher or lower than the initial

state. As a result of this change in energy level, some of the scattered light will be

at a slightly lower or higher frequency than the incident light. This is called Raman
scattering, after the Indian scientist who discovered the phenomenon.

A typical setup for measuring Raman scattering is shown in Figure 12-1. A very

intense light source is needed to observe Raman scattering because only a very small

amount of the scattered light displays a change in frequency. The advent of lasers

has permitted this to be done routinely with visible light and in the ultraviolet with

rather expensive lasers. Prior to lasers, very large arc lamps were utilized. In addition,

very high concentrations are required. However, Raman scattering does not require

the light to be at a wavelength comparable to the energy of vibrational transitions

because it is a scattering phenomenon, as contrasted to absorption spectroscopy. The

Rayleigh line is very intense, but much less intense scattering can be detected at a

lower frequency than the incident light. This is because the incident light was used

to promote the molecule to a higher vibrational energy level. These are called Stokes

lines. An even smaller fraction of the scattered light occurs at a higher frequency than

the incident light because energy is added to the incident light by the movement of the

molecule to a lower vibrational energy level. These are called anti-Stokes lines. Most

molecules are found in their ground vibrational energy level at room temperature so

that the observation of anti-Stokes lines is rare.
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Monochromator
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FIGURE 12-1. Schematic diagram of an apparatus used for Raman spectroscopy. The mirror

at the end of the sample cell is to put the light through the sample a second time, effectively

increasing the path length of the cell, and the collector mirror is designed to collect as much

of the scattered light 90∘ to the source light beam as possible.

Raman spectroscopy has two major advantages over infrared spectroscopy for

studying transitions between vibrational energy levels. First, a permanent dipole

moment is not required. It is only necessary for the polarizability of the molecule

to change between different vibrational energy levels. Second, visible light can be

used rather than infrared light so that Raman spectra can be readily obtained in

water. They can also be obtained in crystals and films. As previously indicated,

the primary disadvantages are that because the intensity of the Raman lines is very

weak, intense light sources and high concentrations of the molecule of interest are

needed. Raman and infrared spectroscopy should be regarded as complementary.

Since infrared spectroscopy is dependent on the permanent dipole moment and

Raman spectroscopy on the polarizability, usually (but not always) a vibrational

transition is observed either in the infrared or in Raman scattering, but not in both.

Thus far in our discussion, the implicit assumption is that the wavelength of the

exciting light for Raman spectroscopy is not near an absorption band. If the wave-

length coincides with the absorption band for an electronic transition, a large increase

occurs in the intensity of the Raman spectrum. Basically, this is related to the fact

that an electronic absorption band is the superposition of many different vibrational

modes. This can sometimes be seen directly in the electronic absorption spectrum by

fine structure in the peaks. Essentially, the alteration of the population of vibrational
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energy levels within the electronic absorption band is responsible for the enhanced

intensity of the Raman spectrum. Determining the spectrum within the electronic

absorption band is called resonance Raman spectroscopy. The twofold advantage of

resonance Raman spectroscopy is that lower concentrations can be used and the spec-

trum is simplified because only the intensified lines are observed. At the present time,

resonance Raman measurements are made primarily in the visible region of the spec-

trum. In biological systems, this means chromophores such as hemes and retinal must

be present.

12.4 STRUCTURE DETERMINATION WITH VIBRATIONAL
SPECTROSCOPY

Infrared spectroscopy has been a useful tool for the determination of the structure

of organic molecules for many years. This is because specific types of bonds

and/or chemical groups have characteristic vibrational frequencies. Some of these

group frequencies are given in Table 12-1. Infrared spectra are often referred to as

TABLE 12-1. Group Frequencies in the Infrared Regiona

Chemical group frequency (cm−1)

–CH3 1460

–CH2– 2930

2860

1470

C–H 3300

–C–C– 1165

–C=O 1730

–C–H (in CH3) 2960

2870

–C–H (in CHO) 2870

2720

H 3060

–CN 2250

–O–O– 1200–1100

–OH 3600

–NH2 3400

=CH2 3030

–SH 2580

–C=N– 1600

C–Cl 725

C=S 1100

aReproduced with permission from D. Sheehan, Physical Biochemistry,
John Wiley and Sons, 2000, p. 98.
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TABLE 12-2. Protein Secondary Structure Determined by Infrared (IR) and Circular

Dichroism (CD) Spectra and X-Ray Crystallography

Secondary structure (%)

Protein 𝛼-Helix 𝛽-Sheet Turn Random Method

Hemoglobin 78 12 10 a IR

87 0 7 6 X-ray

68–75 1–4 15–20 9–16 CD

Myoglobin 85 7 8 a IR

85 0 8 7 X-ray

67–86 0–13 0–6 11–30 CD

Lysozyme 40 19 27 14 IR

45 19 23 13 X-ray

29–45 11–39 8–26 8–60 CD

Cytochrome c (oxidized) 42 21 25 12 IR

48 10 17 25 X-ray

27–46 0–9 15–28 28–41 CD

𝛼-Chymotrypsin 9 47 30 14 IR

8 50 27 15 X-ray

8–15 10–53 2–22 38–70 CD

Trypsin 9 44 38 9 IR

9 56 24 11 X-ray

Ribonuclease A 15 40 36 9 IR

23 46 21 10 X-ray

12–30 21–44 11–22 19–50 CD

Alcohol dehydrogenase 18 45 23 14 IR

29 40 19 12 X-ray

Concanavalin A 8 58 26 8 IR

3 60 22 15 X-ray

3–25 41–49 15–27 9–36 CD

Immunoglobulin G 3 64 28 5 IR

3 67 18 12 X-ray

Major histocompatibility complex antigen A2 17 41 28 14 IR

20 42 X-ray

8–13 74–77 CD

𝛽2-Macroglobulin 6 52 33 9 IR

0 48 X-ray

0 59 CD

Reproduced with permission from A. Dong, P. Huang, and W. S. Caughey, Biochemistry 29, 3303 (1990).

© 1990 American Chemical Society.
aThe band due to random structure appears as a shoulder on the 𝛼-helix band and is too small to be separated

from 𝛼-helix structure. The random structure is estimated at <5% and is included in the 𝛼-helix value.
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“fingerprints” for the molecule, and large compilations of data are available. In the

case of biological molecules, changes in the group frequencies can be used to derive

information about the secondary structure of the molecules (1).

The carbonyl of the amide bond in proteins is particularly useful for the determi-

nation of secondary structure (2,3). The stretching normal mode, amide I mode, of

the carbonyl has been shown to have a specific frequency associated with 𝛼-helices,

𝛽-sheets, and other characteristic structures. (Strictly speaking, this normal mode is

not just the stretching of the carbonyl. It also involves some bending of the C–N–H

angle.) This was ascertained by the study of model peptides for which precise mea-

surements and theoretical calculations of normal modes could be carried out. The

approximate wave numbers corresponding to the three common structures found in

proteins are as follows: 𝛼-helix, 1650 cm−1; 𝛽-sheet, 1632 and 1685 cm−1; and ran-

dom coil, 1658 cm−1.

For proteins, a more empirical approach has been adopted. The most successful

approach uses known structures to calibrate the vibrational frequency measurements.

The vibrational spectrum of the amide bond for a protein is complex because of

the many amide bonds present in multiple environments. Nevertheless, the spec-

trum can be deconvoluted to provide information about the amount and types of

secondary structures present. The assumption usually made is that the observed vibra-

tional frequency is a linear combination of the frequencies associated with the various

secondary structures that are present, with each specific frequency weighted by the

percent of a given structure. Some typical results are shown in Table 12-2 and com-

pared with the known structure of the protein and CD estimates of secondary structure

(4). Raman spectroscopy has proven particularly useful for studying secondary struc-

ture of proteins because water solutions can be used, and the amide I mode has a

spectral band that is well isolated from other protein bands (1630–1700 cm−1). The

amide I band is the most common vibrational frequency used as an indicator of sec-

ondary structure (cf. Ref. 5), but other bands and their relation to structure have been

identified (3).

The structure of nucleic acids can also be investigated with vibrational spec-

troscopy. The base vibrations and the groups involved in hydrogen bonding are

particularly sensitive to the secondary structure of nucleic acids. Most of the work

with nucleic acids has involved Raman spectroscopy (3). For example, the melting

of DNA and RNA structures can be readily followed, and the specific vibrational

frequencies provide molecular details about the melting process. The different types

of helices formed by DNA can be distinguished. Standards are established with

known structures and then used to determine the structures of unknown samples,

that is, the amount of various types of structures present.

12.5 RESONANCE RAMAN SPECTROSCOPY

Heme proteins have been extensively studied with resonance Raman spectroscopy

(6). They are very prevalent in nature and have a very intense absorbance in the vis-

ible region of the spectrum due to the porphyrin ring structure. Excellent Raman
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FIGURE 12-2. Comparison between resonance Raman spectra for carbonmonoxymyoglobin

[(CO)Mb] and deoxymyoglobin at room temperature. The excitation was in the wavelength

region corresponding to the heme absorption. Note that the two species can be readily distin-

guished by their Raman spectra. Reprinted from T. Spiro and R. S. Czernuszewicz, Resonance

Raman spectroscopy of metalloproteins, Methods Enzymol. 246, 416 (1995). © 1995, with

permission from Elsevier.

spectra can be obtained at very low concentrations, often in the micromolar range.

The vibrational spectra obtained are characteristic of the porphyrin ring structure.

However, the highest frequency normal modes, 1350–1650 cm−1, are very sensitive

to the state of the Fe atom that is bound to the porphyrin. Thus, these frequencies

can establish the spin state and coordination states of the Fe in both of its oxidation

states. The binding of ligands to the Fe and the distortion of the porphyrin skeleton

can also be detected. As an example, the high-frequency region of the spectrum for

deoxy- and CO-myoglobin is shown in Figure 12-2 (6). Myoglobin is a protein that is

used for oxygen transport in some organisms, a function carried out by hemoglobin

in humans. The frequency shifts in the vibrational spectra between these two forms

of myoglobin can be readily discerned.

The details of ligand binding in hemoglobin have been frequent targets of Raman

spectroscopy (cf. Ref. 7). As an example, consider the study of a naturally occurring

mutant labeled hemoglobin M Iwate (8). This mutant has a tyrosine substituted for

a histidine in the 𝛼 chain. The resonance Raman spectrum of the tyrosine was deter-

mined by the scattering of 244 nm radiation, and the resonance Raman of the heme

was determined using scattering at 406 and 441 nm. The ultraviolet Raman spectra for

normal hemoglobin and hemoglobin M Iwate are shown in Figure 12-3, along with

the difference spectrum. The vibrations seen in the difference spectrum are attributed
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FIGURE 12-3. Resonance Raman spectra of two different hemoglobin (Hb) variants with

excitation at 244 nm. The spectra of metHb M Iwate (A), metHb A (B), and their difference,

expanded twofold (C), are shown. The inset shows the absorption spectra of the two Hbs in

the visible region. Reprinted in part with permission from M. Nagai, M. Aki, R. Li., Y. Jin, H.

Sakai, S. Nagatomo, and T. Kitagawa, Biochemistry 39, 13093 (2000). © 2000 by American

Chemical Society.

to the extra tyrosine in the mutant. By comparison with known compounds, it was

shown that the tyrosine is deprotonated in the mutant and is bound to the Fe(III)

heme in the 𝛼-subunit.

The effect of this binding on the overall heme structure was determined from the

resonance Raman spectra in the visible range. Furthermore, reduction of the Fe(III)

to Fe(II) resulted in the elimination of the tyrosinate vibrations, and it could be shown

that a histidine residue was coordinated to the Fe(II) heme. This study is a good

example of how vibrational spectroscopy can be used to elucidate the detailed struc-

ture of ligand–protein interactions.
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FIGURE 12-4. The reaction catalyzed by the enzyme dihydrofolate reductase. The NADPH

reduces dihydrofolate to tetrahydrofolate with the production of NADP+. Note that a proton,

obtained from the solvent, is needed on the left-hand side of the equation to give a balanced

chemical reaction.

12.6 STRUCTURE OF ENZYME–SUBSTRATE COMPLEXES

One of the advantages of vibrational spectroscopy is that subtle changes in the elec-

tronic environment can be related to structural changes that may be difficult to observe

by more direct methods, such as X-ray crystallography. This feature has been used

to elucidate the catalytic process for enzymatic reactions (cf. Ref. 9). As an example,

consider the enzyme dihydrofolate reductase (DHFR), which has been discussed ear-

lier (Chapter 10). The reaction catalyzed converts 7,8-dihydrofolate (H2folate) to

5,6,7,8-tetrahydrofolate by catalyzing the transfer of a hydride ion from NADPH to

C6 and addition of a solvent proton to N5 (Fig. 12-4).

An important mechanistic question centers on the protonation state of N5 of dihy-

drofolate. Is the nitrogen protonated prior to the hydride transfer or is the proton

added after the hydride transfer occurs? Raman spectroscopy showed that an N5–C6

stretching vibration changed upon protonation of N5 from 1650 cm−1 to 1675 cm−1

(10). This was established by the use of model compounds, isotope effects on the

vibrational spectrum, and theoretical calculations. On the basis of these extensive

studies of model systems, N5 was found to be unprotonated in the DHFR–H2folate

complex at neutral pH, but it was protonated in the DHFR–H2folate-NADP+ com-

plex. A pH titration indicated that the pKa of N5 is 6.5 in this complex, as compared

to 2.6 when the substrate is not bound to the enzyme. In the actual reaction, NADPH

is present rather than NADP+ so that the implicit assumption is that the complex stud-

ied is a good model for the catalytic reaction. Thus, N5 can be protonated much more

readily in the enzyme–NADP+ complex.

From the point of view of understanding enzyme catalysis, this result means that

the population of the N5 protonated substrate is four orders of magnitude larger in

the environment of the enzyme. The positive charge on the N5 would also make C6

more positive and would presumably make the hydride transfer reaction much faster

than with unprotonated N5. Much of the catalytic effect of the enzyme, therefore,

apparently is due to providing an environment that stabilizes the protonated substrate

prior to the hydride transfer. A structural explanation for this stabilization is not obvi-

ous. The N5 is in a hydrophobic region of the protein, and no negative charges are
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conveniently close that might stabilize the protonated species. However, conforma-

tional changes of the protein have been established as part of the overall mechanism

of action of the enzyme, and these changes may be the source of the stabilization. In

any event, Raman spectroscopy has provided unique insight into the catalytic process.

12.7 CONCLUSION

Vibrational spectroscopy can also be utilized to monitor complex biological pro-

cesses. For example, a recent study monitored oxygen evolution during photosyn-

thesis (11). The oxygen is generated by the oxidation of water at a Mn4CaO5 cluster

site. The oxygen evolution was initiated with a flash lamp, and the time courses of

the absorption changes at 1400 and 2500 cm−1 were followed as a function of time

with Fourier transform infrared spectroscopy. These spectral bands are associated

with the reactions and/or interaction changes of carboxylate groups and the changes

in polarizability of strong hydrogen bonds, respectively. A large number of reaction

intermediates are observed following the flash. The time course of changes in the

infrared spectra provided experimental evidence that significant proton rearrange-

ments occur, most likely reflecting the release of a proton from the catalytic site, and

that a transient state forms before the oxidation of the Mn4CaO5 cluster that leads to

oxygen production. Other proton movements were also detected. These results were

used to develop a detailed reaction mechanism for the oxygen production. Although

vibrational spectroscopy has not been used as extensively in biological systems as

ultraviolet–visible absorption and fluorescence spectroscopy, it can sometimes pro-

vide unique and important information.
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PROBLEMS

12-1. The first four vibrational energy levels (n= 0, 1, 2, 3) for NaI are: 283.67,

848.80, 1411.0, and 1970 × 10−23 J/molecule.

a. Prove that these energy levels are not consistent with the harmonic oscillator

molecule.

b. What is the wavelength of light that would be emitted when the molecule

drops from the n= 1 to n= 0 level? From the n= 3 to n= 2 level?

c. For an anharmonic oscillator, transitions between energy levels can occur

other than changes in n of ±1. What wavelength is the emitted light when

the molecule moves from n= 2 to n= 0?

12-2. From infrared studies of model proteins, the wave numbers for the amide II

band (due to N—H deformation in the peptide bond) are 1540–1550 cm−1 for

the 𝛼-helix, 1520–1525 cm−1 for 𝛽-sheet, and<1520 cm−1 for “random coils.”

a. Calculate the zero-point energy for these three vibration energy levels.

b. Explain why the three fundamental wave numbers differ in terms of the

protein structure.

c. For polyglutamic acid, the amide II band is at a wave number of about

1545 cm−1 at low pH (pH 4). As the pH increases (>pH 9), the wave number

decreases to below 1520 cm−1. Explain this result.



CHAPTER 13

Principles of Nuclear Magnetic
Resonance and Electron Spin
Resonance

13.1 INTRODUCTION

In this chapter, we consider the interaction of molecules with radiation when

molecules are placed into a strong magnetic field. The fundamental properties of

atoms that are important for this discussion are the nuclear spin, for nuclear magnetic

resonance (NMR), and the electron spin, for electron spin resonance (ESR) or,

equivalently, electron paramagnetic resonance (EPR). Strictly speaking, the concept

of spin can be rigorously defined only by the use of quantum mechanics. However,

we will use a semiclassical approach in which spin in the nucleus or in an electron

can be represented as a charge moving in a circular path. This movement creates

a magnetic dipole that can be thought of as a bar magnet. In the absence of a

magnetic field, the magnetic dipole is oriented randomly, and only one energy level

is associated with the electron or nucleus. But in the presence of a magnetic field, the

magnetic dipoles (or bar magnets) tend to be oriented either in the direction of the

field or opposed to it, thus creating multiple energy states. Application of quantum

mechanics to this situation indicates that the orientation of the magnetic dipole and

the energy states are quantized with characteristic quantum numbers.

For electrons, the spin quantum number, S, is 1/2, and the two spin states are +1/2

and −1/2, represented as the familiar arrows pointed up or down. Neutrons and pro-

tons also have a spin quantum number of 1/2 so that the nucleus of an atom has a

characteristic spin quantum number, I. Simple rules exist for determining the nuclear

spin quantum number. Nuclei with an even mass number and even charge number

have no nuclear spin (I = 0). Nuclei with an odd mass number have a half integral

spin (I = 1/2, 3/2, 5/2, etc.). Finally, nuclei with an even mass number and odd charge

number have integral spin (I = 1, 2, etc.).

The number of energy levels associated with spin is determined by the spin quan-

tum number. For an electron, the number of energy levels is 2S + 1, or 2. In the

absence of a magnetic field, no distinction can be made between these two quantum
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states: They have the same energy, that is, they are degenerate. In the presence of a

magnetic field, however, the alignment of the magnetic moments with and against the

magnetic field creates two distinct energy levels. The hydrogen nucleus also has a spin

quantum number, I, of 1/2, with two possible orientations of its magnetic dipole (or

magnetic moment) in a magnetic field and two energy levels (2I + 1). On the other

hand, 23Na has I = 3/2 and four energy levels in the presence of a magnetic field.

In general, the quantum states in the presence of a magnetic field are characterized

by quantum numbers ranging from I to –I in integral steps. Thus, for sodium, these

quantum numbers are 3/2, 1/2, −1/2, and −3/2. Although the average orientation of

the nuclear spin state of a proton is either aligned with the magnetic field or against

it, the conservation of angular momentum requires the magnetic moment associated

with the orientation to rotate about the direction of the field. This is analogous to a

top spinning on its axis and rotating around a vertical line due to gravity.

A quantum mechanical treatment of nuclear spins in a magnetic field of a strength

H provides an explicit equation for the energy levels, E:

E = −gN𝛽NHmI = −
( h

2𝜋

)
𝛾HmI (13-1)

In this equation, 𝛽N is the nuclear magneton and is a universal constant calculated

from the properties of nuclei: 𝛽N = 5.051 × 10−27 Joules/Tesla. The nuclear g factor,

gN, is a constant, but it is different for each atom, and mI is the spin quantum number

characterizing the orientation of the magnetic moment in the magnetic field (I to −I
in integral steps). This equation also defines the gyromagnetic ratio, 𝛾 , which is a

frequently used constant. Values of the nuclear spin quantum number, I, and 𝛾 for

some nuclei of biological interest are presented in Table 13-1.

The dependence of the energy on magnetic field for atoms with a total nuclear spin

quantum number of 1/2 is shown in Figure 13-1. The difference in energy between

the quantized levels increases as the magnetic field increases. Also shown is the

precession of the magnetic moment about the field direction for the two possible

orientations.

The energy difference between the energy levels can be calculated, again with the

assistance of quantum mechanics, by the requirement that the change in quantum

TABLE 13-1. Magnetic Properties of Selected Nuclei

Isotope Spin 107γ(T−1 S−1) Natural abundance

1H 1/2 26.75 99.98
2H(D) 1 4.11 0.0156
13C 1/2 6.73 1.108
14N 1 1.93 99.63
15N 1/2 −2.75 0.37
19F 1/2 25.18 100.0
31P 1/2 10.84 100.0
17O 5/2 −3.63 0.037
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E

H

ΔE = hv = (    )γH ω = γH2π
h

mI = 1/2
mI = 1/2

ml = −1/2

ml = −1/2

FIGURE 13-1. On the left, a schematic plot of the energy versus the magnetic field is shown

for a nuclear or electron spin with a quantum number of 1/2. The frequency of the radiation

emitted/absorbed for a transition between the two energy states created by the magnetic field is

dependent on the strength of the magnetic field (Eq. (13-2)). On the right, the magnetic dipole

associated with the nuclear spin is shown precessing around the direction of the magnetic field

at an angular frequency 𝜔. The two orientations, up and down, correspond to the two energy

levels in the diagram on the left.

number for allowed transitions between energy levels is 1. In this case,

ΔE = gN𝛽NH =
( h

2𝜋

)
𝛾H (13-2)

With this equation we can calculate the frequency, v, associated with transitions

between energy levels since ΔE = hv. The magnetic field of modern instruments

varies from about 7 to 19 Tesla. For a magnetic field of 11.75 Tesla, the frequency

associated with transitions between the energy levels of protons is 500 MHz. This is

in the radio frequency range. The actual energy difference between levels is quite

small, only 3.4 × 10−25 J/proton. Because the energy difference is small, the actual

population difference between energy levels is also very small at room temperature:

the ratio of populations in the two states is exp[−ΔE/(kBT)] = 0.99993 for an 11.75

Tesla magnetic field at 37∘C. For this same magnetic field, the resonant frequency

for 13C is 130 MHz.

The quantum mechanical calculation of the energy levels for an unpaired electron

in a magnetic field is quite similar to that for nuclear spin, except that the electron

always has spin 1/2. The energy difference between levels is

ΔE = gS𝛽SH (13-3)

where gS = 2.0023 and 𝛽S = 9.274 × 10−24 Joules/Tesla for electrons. Because the

Bohr magneton is much larger for an electron than a proton, the energy levels are

further apart, and the resonance energy frequency is much larger. (𝛽S and 𝛽N differ

by the ratio of the mass of the proton to the mass of the electron, 1836.) For a 1
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Tesla field, the resonant frequency is 28,000 MHz = 28 GHz. This frequency is in the

microwave region, and quite different experimental techniques are required for ESR

and NMR.

Finally, we return to the precession of the magnetic moment about the direction

of the magnetic field, as depicted in Figure 13-1. The angular precession frequency,

that is, how fast the magnetic moment is rotating about the vertical line, is 𝜔 = 2𝜋v
= 𝛾H. This is called the Larmor frequency. The visualization of rotating magnetic

moments is useful when considering the effects of changing magnetic fields on the

nuclear spins.

We first discuss NMR in some detail because it is extensively used in biology.

Although ESR has been used to obtain important information about biological sys-

tems, it is less extensively used and will receive relatively brief consideration.

13.2 NMR SPECTROMETERS

The first NMR spectrometers placed a sample in a fixed magnetic field and applied

a fixed radio frequency by means of a coil perpendicular to the field direction. The

magnetic field was varied by a coil until resonance was achieved, with the absorp-

tion being detected by a third coil. This is analogous to the methods used in visible

and ultraviolet spectroscopy. Although the magnetic field applied to the sample is

uniform, the actual magnetic field at the nucleus is dependent on a number of envi-

ronmental factors so that the field must be scanned to find the energy absorption

(resonance) condition. We will return to this matter a bit later. A typical spectrum

would display the absorption of energy versus frequency, as shown schematically in

Figure 13-2.

Free induction
decay

Time (seconds)

0.0 0.2 0.4 0.6 0.8 800 600 400 200 0

Frequency (Hz)

Spectrum

Fourier

transform

FIGURE 13-2. The free induction decay of the signal from nuclei in a magnetic field is shown

(left) after a short pulse of radiofrequency radiation is applied to the sample. A Fourier trans-

form of the free induction decay gives the familiar NMR spectrum on the right where the

absorption is plotted versus the frequency. Copyright by Professor T. G. Oas, Duke University.

Reproduced with permission.
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The absorption of radiation is difficult to detect because the populations of the

energy states are very similar, as discussed earlier. In practice, this means that

relatively high concentrations of the species being observed must be present. The

sensitivity of detection depends on the characteristics of the nucleus being observed

and its natural abundance. The sensitivity is also enhanced by increasing the energy

difference between the two states, which is the reason that instruments with larger

magnetic fields are being developed continuously. The proton, 1H, provides the best

sensitivity, and its natural abundance is 99.98%. Consequently, the most extensive

measurements have been carried out with proton NMR. Although the natural

abundance of 31P is essentially 100%, the sensitivity of detection relative to protons

is only about 6%. Probably the second most studied atom with NMR is 13C. Its

natural abundance is only about 1%, but its prevalence in biological compounds is

very extensive. Furthermore, its abundance in molecules of interest can be enhanced

through synthesis or bacterial growth with 13C-enriched compounds. Regrettably,

the most abundant isotope of carbon, 12C, does not have a nuclear spin. A variety

of other isotopes have been studied with NMR. Most notable for biologists are
14N, 15N, and 19F, which can often be substituted for H in substances of biological

interest.

As discussed in Chapter 7, the frequency dependence of the absorption can be

transformed into a time dependence and vice versa through Fourier transforms. The

most common method of obtaining an NMR spectrum today is to apply a timed radio

frequency pulse and then watch the nuclei return to their equilibrium configurations.

The time dependence of the return to equilibrium or free induction decay (FID) can

be transformed from a time-dependent signal into a frequency spectrum, as shown

schematically in Figure 13-2. Multiple FIDs can be combined to produce an average

FID that has less noise than a single FID. Consequently, Fourier transform instru-

ments are considerably more sensitive than continuous wave instruments so that lower

concentrations can be used. The timing and nature of the pulses can be quite complex,

but this does not alter the basic concept underlying Fourier transform methods.

13.3 CHEMICAL SHIFTS

Thus far, we have discussed NMR as though the nuclei were isolated in the magnetic

field, but the utility of NMR derives from the interaction of the nuclei with surround-

ing electrons and other nuclei in the molecule. The external magnetic field interacts

with the electrons to induce magnetic moments in the electrons that usually oppose

the external field. Consequently, the magnetic field at the nucleus is usually lower

than the external field. This shielding effect of the electrons can be incorporated into

the standard equations by noting that the field at the nucleus, H, in a static magnetic

field, H0, is

H = H0(1 − 𝜎) (13-4)

where 𝜎 is the shielding constant, typically about 10−5. The value of 𝜎 can be positive

or negative, depending on whether the magnetic field from the electrons aligns against

or with the external magnetic field.
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The shielding effect is directly proportional to the strength of the external field,

but the same relative change in resonance frequency is observed, regardless of the

external field strength. This shielding effect, therefore, can be expressed as a relative

change in frequency with respect to a standard, thereby rendering it independent of

the external field. These frequency changes are called chemical shifts, 𝛿, and are given

in units of parts per million (ppm). The chemical shift can be written as

𝛿 =
v − vref

vref

106 = (𝜎ref − 𝜎)106 (13-5)

where v is the frequency of the nucleus, vref is the frequency of a standard compound,

and 𝜎ref is the shielding constant of the standard compound. The most common ref-

erence compound for protons is tetramethylsilane, but it is insoluble in water so

trimethylsilylpropionate-d4 is usually used in aqueous media (cf. Ref. 1 for a dis-

cussion of chemical shift references). In principle, the chemical shift depends on the

(a)

(b)
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FIGURE 13-3. Range of typical chemical shifts for 1H and 13C resonances. P. W. Atkins,

Physical Chemistry, 3rd edition, W. H. Freeman, New York, NY, 1986, p. 489. © 1978, 1982,

1986 by Peter W. Atkins. Used with permission of Freeman.
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orientation of the sample with respect to the magnetic field. In liquids, this is generally

not a problem because molecules are rapidly tumbling and sampling all possible ori-

entations. For large molecules that tumble relatively slowly, however, the resonances

can become so broad that the spectrum is obscured, and special techniques such as

TROSY, which is discussed below, are used to interpret the spectra. In solids, special

conditions are required to obtain high-resolution spectra.

The electron density at the nucleus is often the dominant factor in determining

the chemical shift. A high electron density creates a large shielding, and the applied

magnetic field must be increased to get resonance: this results in an upfield shift and

a decrease in the magnitude of 𝛿 because reference compounds are generally highly

shielded. Conversely, a low electron density at the nucleus causes a downfield shift

and increase in 𝛿. The range of chemical shifts for 1H and 13C in various compounds

is shown in Figure 13-3.

In principle, the chemical shifts of nuclei in proteins should provide information

about the protein structure. However, chemical shifts alone are not sufficient to deter-

mine protein structure. The average chemical shifts of various nuclei for amino acids

in denatured proteins are given in Table 13-2. Note that they are quite similar for all of

the amino acids. When secondary structures such as 𝛼-helices or 𝛽-sheets are present,

changes in chemical shifts occur so that the amounts of various secondary structures

present can be inferred from the NMR spectra.

TABLE 13-2. Average Chemical Shifts of Random Coil Amino Acids (ppm)

Amino acid 𝛼-1H Amide-1H 𝛼-13C Carbonyl-13C Amide-15N

Ala 4.33 8.15 52.2 177.6 122.5

Cys 4.54 8.23 56.8 174.6 118.0

Asp 4.71 8.37 53.9 176.8 120.6

Glu 4.33 8.36 56.3 176.6 121.3

Phe 4.63 8.30 57.9 175.9 120.9

Gly 3.96 8.29 45.0 173.6 108.9

His 4.60 8.28 55.5 174.9 119.1

Ile 4.17 8.21 61.2 176.5 123.2

Lys 4.33 8.25 56.4 176.5 121.5

Leu 4.32 8.23 55.0 176.9 121.8

Met 4.48 8.29 55.2 176.3 120.5

Asn 4.74 8.38 52.7 175.6 119.5

Pro 4.42 — 63.0 176.0 128.1

Gln 4.33 8.27 56.0 175.6 120.3

Arg 4.35 8.27 56.0 176.6 120.8

Ser 4.47 8.31 58.1 174.4 116.7

Thr 4.35 8.24 62.0 174.8 114.2

Val 4.12 6.19 62.2 176.0 121.1

Trp 4.66 8.18 57.6 173.6 120.5

Tyr 4.55 8.28 58.0 175.9 122.0

Reproduced with permission from D. S. Wishart and B. D. Sykes, Chemical shifts as a tool for structure

determination, Methods Enyzmol. 239, 363 (1994). © 1994, with permission of Elsevier.



296 PRINCIPLES OF NUCLEAR MAGNETIC RESONANCE AND ELECTRON SPIN RESONANCE

Some of the largest changes in chemical shifts in proteins and nucleic acids are

observed for aromatic rings of nucleotides, tyrosine, phenylalanine, and tryptophan.

These shifts are due to the interaction of the external magnetic field with the delo-

calized electrons of the aromatic ring. Nuclei above or below the ring usually have

decreased chemical shifts, whereas those near the edges have increased chemical

shifts. These effects are called ring currents and can cause unusually large chemical

shifts. These chemical shifts can provide information about the structure of macro-

molecules and about alterations in structure due to changes in the environment such

as temperature and the addition of various chemical agents.

13.4 SPIN–SPIN SPLITTING

The chemical shift is caused by interactions between the nucleus and nearby elec-

trons. A conceptually different interaction is transmitted between nearby nuclei by

intervening electrons participating in chemical bonds. Basically, the spin state of a

neighboring nucleus alters the shielding a nucleus experiences. This effect is smaller

than typical chemical shifts and is called spin–spin splitting and is often referred to

as scalar coupling. Unlike chemical shifts, the magnitude of spin–spin coupling is

independent of the magnitude of the applied magnetic field.

This effect is most easily understood by considering the proton NMR spectra of

ethanol shown in Figure 13-4. The low-resolution spectrum (left) shows the three

peaks that might be expected on the basis of our discussion of chemical shifts, namely,

CH3 protons, CH2 protons, and the OH proton. The ratio of the areas under the reso-

nances is proportional to the number of protons in each chemical environment, 3:2:1.

The high-resolution spectrum (right) shows that these three resonances are multi-

plets of peaks due to spin–spin splitting. The number of peaks within a multiplet is

determined by the number of spin orientations of neighboring nuclei. In this case, the

spins of the two hydrogens on the methylene (CH2) carbon can have four possible

arrangements of orientations

↑↑ ↑↓ ↓↑ ↓↓

A
bs

or
ba

nc
e

OH
CH2

CH3

OH CH2

CH3

HH

FIGURE 13-4. Schematic representation of the NMR spectrum of dry ethanol at low (left)
and high (right) resolution. The ratio of the areas under the peaks is 3:2:1. The octet expected

for the methylene protons (right) is not shown as the splitting of the four peaks is very small.
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The middle two arrangements are equivalent so that the methyl proton resonances

are split by the neighboring CH2 into three resonances with relative areas under the

peak of 1:2:1. The OH proton, also next to the methylene carbon, is split into three

peaks. Similarly, the methyl proton can have three different orientations, with the two

underlined groups being equivalent:

↑↑↑ ↑↑↓ ↑↓↑ ↓↑↑ ↑↓↓ ↓↑↓ ↓↓↑ ↓↓↓

The methylene resonance, therefore, is split into four peaks, with area ratios of

1:3:3:1. The hydroxyl proton will split these four peaks further into an octet, but this

detail is difficult to see in the spectrum. In order for scalar coupling to occur, the two

nuclei must have distinct resonance peaks. Thus, the methyl protons will not split

each other’s resonances.

Spin–spin splitting is of special importance in considering the NMR spectra of

proteins because coupling between the 𝛼-C proton and the N proton of the amide

bond occurs. Scalar coupling can also occur between different nuclei, for example,

a proton and 15N. The magnitude of the spin–spin splitting is called the coupling

constant and is designated by J. The number of covalent bonds separating the nuclei

in question is often appended as a prior superscript, and a post subscript designates

the atoms involved. For example, the coupling constant for the amide proton and the

𝛼-C proton would be written as 3JHN-H𝛼
.

The spin–spin coupling constant for protons on adjacent atoms varies consider-

ably, from about 0 to 10 Hz. This variation is due to different torsional angles between

the protons as defined below:

θ = 0° θ = 180°

C CC C

H

HHH

If the torsional angle is 90∘, the coupling is close to zero, whereas when it is 0∘
or 180∘, it is about 10 Hz. If free rotation about the bond occurs, an average coupling

constant is obtained. The dependence of the coupling constant on the torsional angle

is given by the Karplus equation:

J = A + B cos 𝜃 + C cos2
𝜃 (13-6)

The constants A, B, and C can be calculated or established from measurements with

molecules having known dihedral angles. If free rotation about the bond occurs, the

coupling constant will be some average of the possible dihedral angles. However, if

the bond is constrained, such as in a peptide linkage that has double bond character or

in a folded macromolecular structure, the calculated dihedral angel can provide useful

information about the structure. This is especially true when used in conjunction with

other information.

This simple picture of spin–spin splitting is not rigorous. It provides a useful and

adequate explanation for relatively simple situations but breaks down when consid-

ering multidimensional NMR, which is discussed later.
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13.5 RELAXATION TIMES

Thus far, we have not dealt explicitly with the time scale for nuclear spin transitions. If

we think of a pulsed NMR experiment, we can envisage nuclear spins being oriented

in a specific direction by the pulse, with the precession of spins about the direction of

the field. When the pulse is turned off, the nuclei will come to equilibrium with regard

to their environment. The rate at which a particular nuclear spin returns to equilibrium

depends on interactions with other nuclear spins, and this in turn will depend on

the fluctuating fields experienced as the molecules tumble. This mode of relaxation

involves a change of energy between the spin systems and their environment. The

return of a spin population in a magnetic field to its equilibrium population follows

first-order kinetics, and the reciprocal of the first-order rate constant is called the

spin–lattice relaxation time, T1. Typically, it is in the range of tenths of a second to

seconds for protons.

Simply put, the value of T1 depends on the interactions of a nuclear spin with its

neighbors, including the solvent, and how fast the molecule rotates. The molecular

rotation is characterized by a rotational correlation time that is basically a measure

of the rotational diffusion constant of a molecule. Measurements of T1 can, in fact,

be used to determine rotational diffusion constants of rigid molecules. In some cases,

chemical exchange of nuclei in different environments can contribute to T1, although

this is somewhat unusual. In general, anything that gives rise to magnetic fluctuations

in the environment can contribute to this relaxation, for example, unpaired electrons

or dissolved oxygen.

A second mode of nuclear spin relaxation is possible that does not involve the

exchange of energy of the magnetic moment with its environment. In terms of the

picture of a nuclear spin being oriented in a field and precessing about the field direc-

tion, the spin–lattice relaxation time can be thought of as characterizing the return of

the spin orientations to their equilibrium positions. The spin–spin relaxation time, T2,

on the other hand, is associated with the rate of precession about the field direction.

Basically, T2 is a measure of alterations in the precession frequency during nuclear

spin relaxation. This alteration is different for different nuclear spins so that the rates

of precession change with respect to each other. This is called a loss of phase coher-

ence. This can be viewed as an exchange of energy within the spin system. It does

not change the net population of the excited states.

The dominant factor determining T2 is the rate of molecular tumbling. The molec-

ular tumbling effect is quantitatively different for T2 and T1. Because T2 is generally

much shorter than T1 in liquids, the line widths of spectra are determined by T2,

1/T2 = 𝜋v1/2 where v1/2 is the peak width at one-half of its maximum value. As pre-

viously stated, rapidly tumbling molecules produce relatively sharp lines whereas

slowly tumbling molecules have relatively broad lines.

Chemical reactions provide one of the most interesting examples of how T2 can

be altered. Consider the simple chemical reaction

A ⇄ B (13-7)
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Assume that a specific proton has a different chemical shift in A and B. (This means

they have a different Larmor frequency.) If the chemical exchange rate is very slow

compared to the difference in chemical shifts (i.e., smaller than the difference in

Larmor frequencies), two distinct peaks will be seen in the NMR spectrum, as shown

in Figure 13-5 (top). At the other extreme, if the chemical exchange rate is very

fast relative to the difference in the chemical shift frequencies, states A and B will

interconvert many times during the NMR experiment, and the two frequencies are

effectively averaged. Consequently, only a sharp single line will be seen, located at

the average of the two lines weighted by the relative populations of A and B (Fig. 13-5,

bottom). In the intermediate cases, where the rate of the chemical reaction is com-

parable to the difference in chemical shift frequencies, the two lines will broaden,

coalesce into a single broad peak, and finally sharpen, as shown in Figure 13-5. For

a single line, the spin–spin relaxation time can be written as

1

T2

= 1

T2A
+ 1

𝜏A

(13-8)

where T2A is the relaxation time of the A state without significant chemical exchange

and 𝜏A is the relaxation time for the chemical reaction. We will not delve into

Frequency

S
ig

na
l

v

FIGURE 13-5. Schematic drawing of the effect of chemical exchange on NMR spectra. In

the top spectrum, resonances from two protons are shown. In this case, the rate of exchange

between the two environments is much less than v, or 1/𝜏A ≪ v, whereas in the lowest spectrum,

1/𝜏A ≫ v, so that only a single resonance is seen that is the average of the positions in the

upper spectrum. The two spectra in the middle represent the cases where 1/𝜏A ∼ v, with 1/𝜏A

becoming progressively larger from the top spectrum to the bottom spectrum.
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the details, but the line shape can be quantitatively analyzed to determine the rate

constants for the chemical reaction. The time scale of the reactions that can be

studied is determined by the chemical shift difference between the two states. For

example, if the difference is 100 Hz, then rates of chemical reactions in the range of

1/100 = 10−2 s can be studied. Reactions such as the rate of exchange of hydrogens

between proteins or amino acids and water have been investigated with this method.

13.6 MULTIDIMENSIONAL NMR

Thus far, we have considered what is now called one-dimensional NMR, namely

determining the spectrum for a specific nucleus by scanning the magnetic field or

by analysis of the frequencies associated with the free induction decay following

a frequency pulse. One-dimensional analysis has been invaluable in determining

the structures of small molecules and can also be used to obtain information about

macromolecules. However, in order to get definitive structural information about

macromolecules, multidimensional NMR is necessary. The genesis of this field was

in the early 1970s, and its vigorous evolution continues to this day. The underlying

principle of multidimensional NMR is to find “cross peaks” that link two resonances.

This linkage can be either through space or through a small number of chemical

bonds. Finding these cross peaks allows the spatial relationships to be determined

between the nuclei responsible for the two resonances. These connections between

resonances are sometimes called coherence pathways.

A detailed presentation of multinuclear NMR is beyond the scope of this text.

However, the concepts can be understood by considering two-dimensional NMR

in a qualitative manner. Two-dimensional NMR can be viewed as the assembly of

one-dimensional spectra in an array. The experiments consist of four stages, illus-

trated in Figure 13-6. In the preparation phase, a frequency pulse is applied to the

system. An evolution phase of length t1 then occurs and is followed by a mixing

period ending in a second pulse. (A pulse may also be applied between the evolution

and mixing phases, depending on the specific two-dimensional experiment being car-

ried out.) Finally, a free induction decay occurs for a time t2 in the data acquisition

Data acquisitionEvolution

t1 t2τm

Mixing

FIGURE 13-6. Schematic representation of a two-dimensional NMR experiment in which a

radiofrequency pulse (black bar) is applied to the sample initially. After a period t1, a second

pulse is applied, followed by a mixing time, 𝜏m. The data are acquired after a final pulse. The

number of pulses and the various times depend on the type of experiment being carried out.
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phase. In the actual experiment, t1 is varied incrementally and the signal is collected

for the period t2, ultimately giving a large number of time points. This experiment

is repeated many times and signal averaged. The nature of the pulses will depend on

the specific experiment. Qualitatively, the pulses flip the spins (magnetic moments)

in the field that is created, and the end of the mixing phase flips them again. In the

evolution phase, the magnetic moments associated with the nuclear spin will partially

return to equilibrium at a rate that depends on T1 and T2. The return to equilibrium

also occurs in the collection phase. By contrast, one-dimensional NMR uses a single

pulse, followed by free induction decay and data collection.

The design of these experiments can be quite tricky, as it depends on what

connections between spin states are being probed and what the relaxation times

are. The representation of the result is done by carrying out a Fourier transform

on both the t1 and t2 data sets and converting them into a two-dimensional plot

of v1 versus v2 with the third dimension being the amplitude of any resonance

peaks that are observed. A very simple illustration is given in Figure 13-7 for two

interacting spin systems. Peaks that occur on the diagonal have the same frequency

in both dimensions and correspond to the one-dimensional spectrum, whereas those

AD

BC

BC

C

D

B

A

ν2

ν1

AD

FIGURE 13-7. Schematic representation of a two-dimensional NMR spectrum for two spins.

The frequency axes labeled v1 and v2 are the positions of the resonances for the two different

spins. The diagonal (circles) corresponds to the one-dimensional spectrum. If coherence trans-

fer occurs during the mixing period, off-diagonal resonances (squares) will be seen. In this

example, coherence transfer occurs between nuclei with resonances at A and D and between

nuclei with resonances at B and C.
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occurring off the diagonal represent cases where different spin systems interact

during the mixing period (coherence transfer). Contours are usually used to indicate

the amplitudes of the resonance peaks, rather than a third dimension. The interactions

(coherence transfer) between nuclear spins can be either homonuclear (same nuclei)

or heteronuclear (different nuclei).

One of the first two-dimensional experiments carried out was COSY (COrrelated

SpectroscopY). This experiment identifies pairs of nuclei that are linked by scalar

coupling (spin–spin splitting connectivities). The interaction between these nuclei

occurs during the relaxation taking place in the mixing phase and results in cross

peaks in the spectrum. Scalar coupling (off-diagonal peaks) between nuclei means

that they are within three covalent bonds. A typical COSY spectrum is shown in

Figure 13-8 for 𝜆 Cro repressor, a DNA-binding protein that regulates phage devel-

opment.

Y10

Y51

ppm

F58

F14

Y26

7.2 6.8 6.4

6.4

6.8

7.2

F41

pp
m

FIGURE 13-8. Example of a COSY spectrum for the protons of the aromatic spin systems

in 𝜆 Cro repressor protein. Tyrosine rings are connected with a dashed line and phenylalanine

rings by a solid line. The diagonal and cross peaks can be easily seen. Reprinted in part with

permission from P. L. Weber, D. F. Wemmer, and B. R. Reid, Biochemistry 24, 4553 (1985).

© 1985 by American Chemical Society.
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One of the most important two-dimensional NMR experiments is Nuclear Over-

hauser Effect SpectroscopY (NOESY). This is a through space interaction that takes

place because of the interactions between the magnetic dipoles of two nuclear spins.

In terms of our previous discussion, this primarily involves the T1 mode of relaxation

and is coupled with rotational motion. The NOE is the NMR equivalent of fluores-

cence resonance energy transfer discussed in Chapter 10. In fact, an NOE can be

observed in one dimension. If a sufficiently large magnetic field is applied at the res-

onance condition of a given nucleus, the spin system becomes saturated, that is, the

ground and excited states become equally populated so that no more energy can be

absorbed. If the magnetic moment of this nucleus is sufficiently close in space to

another magnetic moment, energy can be transferred. This perturbs the intensity of

the resonance of the nucleus to which energy is transferred and decreases the reso-

nance intensity of the nucleus that was initially irradiated. The interaction between

magnetic dipoles varies as the inverse sixth power of the distance between the two

dipoles so that only nuclear spin systems that are very close to each other give rise to

NOEs. In practice, this means distances of 5 Å or less.

The NOESY experiment is quite similar to the two-dimensional experiment

described previously, except that a pulse is applied at both the beginning and the

end of the mixing period, with the time of the mixing period being constant. An

example of a NOESY spectrum is given in Figure 13-9 where proton–proton NOEs

for a complex of DNA and an antibiotic, distamycin A, are presented. Because of the

distance dependence of this effect, the distance between spins can be estimated from

the cross peaks. However, because only the distance, not the direction, is derived

from these measurements, many distances must be determined to arrive at a unique

structure.

Another NMR technique, residual dipolar coupling (RDC), is now commonly used

to provide information on the relative orientations of the nuclei and the directions of

bonds connecting them in macromolecules. In high-resolution NMR, the interactions

between the magnetic dipoles of nuclei are averaged to zero by the rapid tumbling of

molecules, which produces narrow spectral resonances. However, additional struc-

tural information can be obtained by partially orienting samples in the magnetic

field. In this case, the coupling between nuclear magnetic dipoles can be measured

as RDC. These measurements give information about the relative orientations of the

nuclei. Moreover, these interactions extend over a longer distance than NOE effects.

Knowledge of the relative orientations of nuclei can be translated directly into struc-

tural information. Thus comprehensive RDC measurements can be used to determine

macromolecular structures. They can also be used to obtain dynamic information, a

topic that will not be pursued here.

One of the most useful types of multidimensional spectra is HSQC (Heteronu-

clear Single Quantum Correlation), an example of which is shown in Figure 13-10

for a protein involved in proton transport across a membrane (subunit c of ATP syn-

thase from E. coli). This spectrum uses both 1H and 15N and selectively detects only

pairs of covalently attached nuclei. Each spot in the contour map represents such a

pair, with the position on the horizontal axis representing the proton resonance fre-

quency and the position on the vertical axis representing the resonance frequency of
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FIGURE 13-9. Example of a NOESY spectrum for a complex of distamycin A and DNA. Aro-

matic C6H resonances of adenine and guanine and C2H resonances of adenine are shown along

the vertical axis. The Cl′H resonances are shown along the horizontal axis. Sets of sequential

connectivities are denoted by dotted, dashed, and solid lines. Reprinted in part with permis-

sion from J. G. Pelton and D. F. Wemmer, Biochemistry 27, 8088 (1988). © 1988 by American

Chemical Society.

the nitrogen nucleus. Because every amino acid, except for proline, has a backbone

amide, essentially every residue is represented in this spectrum. Side chains contain-

ing amides will give rise to additional resonances. This gives direct information about

which nitrogen is coupled to which hydrogen. Furthermore, the resonances are usu-

ally quite well resolved. The HSQC spectrum provides information that is useful for

assigning the observed resonances to specific amino acid residues.

Extending NMR to dimensions greater than two involves similar concepts. Mul-

tiple pulses and even field gradients are used. These dimensions can be in terms of
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FIGURE 13-10. Example of an HSQC spectrum. All 76 backbone amide cross peaks are

shown for the c subunit protein of ATP synthase from E. coli. This membrane-bound protein

is involved in proton transport across the membrane. Reprinted in part from M. F. Girvin, V.

K. Rastogi, F. Abildgaard, J. L. Markley, and R H. Fillingame, Biochemistry 37, 8817 (1998).

© 1998 by American Chemical Society.

different nuclei and/or combining two-dimensional experiments. The most common

nuclei studied in addition to 1H are 13C and 15N. In these cases, proteins and nucleic

acids enriched in the nucleus of interest can be used to enhance the sensitivity.

Transforming the NMR results for a macromolecule into a structure is straightfor-

ward but not easy. First, the resonances have to be assigned to specific nuclei within

the structure. This can be done by analysis of scalar coupling and sequential NOEs.

The three-dimensional structure is derived from the distances determined from NOE

experiments, RDC measurements, and dihedral angle information determined from

spin–spin splitting and the Karplus equation (Eq. (13-6)). In practice, the information

gleaned from the NMR spectra provides hundreds of constraints on the structure. A

number of computer programs have been written that take the constraints and convert

them into a family of structures, usually very similar, consistent with the constraints.

These programs involve sophisticated theory as well as data analysis to arrive at final

structures. NMR spectroscopy is a very powerful tool for determining protein struc-

tures in their biologically active conformations.

As proteins increase in size, their rate of rotation slows down, and NMR spectra

broaden. This limits the size of proteins for which structures can be determined. How-

ever, several recent advances have greatly enhanced the use of NMR for structure

determination. Resolution can be greatly improved by the use of transverse relax-
ation optimized spectroscopy (TROSY). This technique, which requires a relatively
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high magnetic field, selects a narrow component of a broad line by cancelling out

various components of the broad line, thereby producing a narrow line. In addition,

the sensitivity of NMR has been greatly enhanced by the use of cryogenic probes

cooled to near liquid helium temperatures. This allows the study of more dilute solu-

tions of macromolecules. In fact, it is now possible to determine NMR spectra in live

cells, permitting the direct study of physiological systems (2).

The size of macromolecules whose structure can be determined with NMR

increases year by year. At the present time, structures can be determined for

molecules as large as 50,000–75,000 molecular weight, and features of molecules as

large as 200,000 molecular weight can be discerned.

13.7 MAGNETIC RESONANCE IMAGING

One of the most remarkable advances in diagnostic medicine has been the evolution of

magnetic resonance imaging (MRI). Although X-rays readily distinguish hard objects

such as bones, they do not distinguish soft tissue structure. MRI, on the other hand,

provides excellent images of tissues and is able to distinguish between various types

of tissues. Protons in water are the primary nucleus used for detection, although appli-

cations with 13C, 31P, and 19F have been developed. The principle underlying MRI is

the use of a magnetic field gradient. Since the resonance frequency is directly propor-

tional to the magnetic field, the frequency of the resonance will depend on its location

in the magnetic field. The intensity of the absorption is dependent on how many pro-

tons are present. If a linear magnetic field gradient is applied, the position of the

resonance will change, also linearly, as the field is varied. Thus, a plot of the ampli-

tude of the resonance versus frequency is equivalent to a plot of the integrated number

of protons versus distance. A series of cross sections can be obtained by rotating the

sample in the field, or by moving the field around the sample. These cross sections

can then be reconstructed to give a three-dimensional image.

In soft tissue, the amount of water varies for different tissues, so the density of

protons varies. In addition, the various tissues are characterized by significantly dif-

ferent T1 values. The difference in proton density can be shown in reconstructions

by varying the darkness of the shading. This can be seen in Figure 13-11, where the

MRI image of an adult human brain is shown. In addition to being able to distin-

guish various soft tissues, MRI is noninvasive, as contrasted to X-rays or injections

of foreign substances, including radioactive isotopes, required for other imaging tech-

niques. Mention also should be made of functional MRI. In these studies, metabolism

and neurological activity can be directly monitored in living subjects.

13.8 ELECTRON SPIN RESONANCE

We now return briefly to ESR. Unlike NMR, ESR is not observed for most materials.

This is because electrons are usually paired and consequently have no net magnetic

moment. However, free radicals and other paramagnetic substances have unpaired
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FIGURE 13-11. MRI of an adult human brain. Courtesy of Professor Scott Huettel, Duke

University Brain Imaging and Analysis Center. Reproduced with permission.

electrons that give rise to ESR spectra. Because the frequencies associated with tran-

sitions between the energy levels of unpaired electrons in a magnetic field are in the

microwave region, special techniques are required for placement of the sample in the

magnetic field. Conceptually, the experiment is the same as for NMR. The magnetic

field is varied until resonance is found.

The usefulness of ESR in biological systems arises from the interactions between

nuclear spins and the electron spin. This gives rise to “hyperfine structure” in the

spectrum. For example, if a neighboring nucleus has a nuclear spin of 1/2, it will

have two orientations in the field and will split each of the two energy states of the

electron into two, as shown in Figure 13-12. Because of quantum mechanical selec-

tion rules, only two transitions between these four energy states are allowed. If the

nuclear spin is 1, six energy levels are created and three transitions between the levels

are allowed. The hyperfine structure can provide information about the environment

of the paramagnetic species.

As with NMR, the sharpness of the spectrum provides information about the rota-

tional mobility of the paramagnetic species. However, the time scale for rotation is

much different than NMR because the frequencies are much higher. For ESR, rota-

tional correlation times of approximately 10−9 s influence the line width, whereas for

NMR the time scale is about 10−6 s. For reasons we will not dwell on here, the spectra

are usually presented as the derivative of the amplitude versus the field (Fig. 13-13).

One of the important developments in the application of ESR to biological systems

was the synthesis of stable free radicals that could be reacted with macromolecules

and membranes, both noncovalently and covalently (3). The most common element

of these spin labels is the nitroxide free radical (Fig. 13-14). Because the 14N nucleus,

with a nuclear spin of 1, is next to the free radical, three bands are seen in the spectrum.

The derivative of the resonances is three up and down peaks. This is illustrated in

Figure 13-14 where ESR spectra are shown for nitroxides under various conditions

of rotational mobility. The effect of molecular motion on the spectra of the free radical
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FIGURE 13-12. Hyperfine splitting of the energy levels of an electron in a magnetic field, H,
by a nuclear spin. The electron has a spin quantum number, mS, of ±1/2 and the nucleus has a

spin quantum number, mI, of ±1/2.
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FIGURE 13-13. Schematic representation of a derivative spectrum. An absorbance peak is

shown as a solid line and its derivative is shown as a dashed line. ESR spectra are usually

presented as derivatives of the absorption.
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FIGURE 13-14. ESR spectra of spin labels whose structures are shown at the top of the

figure. The effect of viscosity on the line shapes and rotational correlation times, 𝜏, is shown.

Reproduced with permission from R. A. Dwek, Nuclear Magnetic Resonance in Biochemistry,
Clarendon Press, Oxford, England, 1973, p. 289. Adapted from data in P. Jost, A. S. Waggoner,

and O. H. Griffith, Spin Labeling and Membrane Structure, in Structure and Function of Bio-
logical Membranes (L. Rothfield, ed.), Academic Press, New York, 1971, p. 83. 1971, with

permission of Elsevier.

is clearly illustrated. As these spectra illustrate, spin labels can provide information

about the rotational mobility of the macromolecule to which they are bound. However,

it should be noted that the probe mobility can be due to macromolecule rotation,

segmental motion of the macromolecule, or simply rotation of the probe in the site to

which it is bound. The interpretation of what motion is being observed is not always

straightforward.

ESR spectra can also provide information about the polarity of the spin label envi-

ronment. The extent of splitting of the hyperfine structure depends on the effective

dielectric constant of the environment. Thus, for example, the splitting is quite dif-

ferent in a biological membrane than in solution. When bound to a membrane, the



310 PRINCIPLES OF NUCLEAR MAGNETIC RESONANCE AND ELECTRON SPIN RESONANCE

splitting will be different for a spin label close to a polar head group and for a spin

label buried in the hydrocarbon chains.

This chapter is a relatively brief introduction to NMR and ESR. Many texts are

available that provide more detailed descriptions of NMR (cf. Refs. 4–8) and ESR

(cf. Ref. 9). Unfortunately, most of these are not easy reading and require a working

knowledge of quantum mechanics. Applications of these techniques to biological

systems are presented in the next chapter.
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PROBLEMS

13-1. Deduce the structure of the compounds below from their schematic NMR spec-

tra. Indicate which protons are assigned to each resonance.

Chemical shift (ppm relative to tetramethylsilane)

Integrated
intensity

3 3 2

1.22.03.04.0

C4H8O2

Chemical shift (ppm relative to tetramethylsilane)
* Multiple lines

Integrated
intensity

1

*

1 6

1.02.03.03.8 3.7

C3H8O
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Chemical shift (ppm relative to water)

Integrated
intensity

−3.64.6

1 3

C2H4O

13-2. Nucleotide phosphates are important biological molecules. Sketch the
31P(spin 1/2) NMR spectra of a nucleotide monophosphate, diphosphate, and

triphosphate. Order the resonances in terms of chemical shift, with zero on

the right-hand side. The phosphates are designated as 𝛼, 𝛽, and 𝛾 with 𝛼 being

closest to the sugar and 𝛾 furthest away. For the triphosphate, the 𝛾 position

has the lowest electron density and the 𝛽 position has the highest.

13-3. The structure of l-leucine in D2O is

CβH2Cγ Cα

CH3

COO−

CH3 ND3
+

H

H

a. Sketch the one-dimensional proton NMR spectrum. The approximate

chemical shifts are 1.0 for the methyl groups, 1.4 for the 𝛾 hydrogen, 1.5

for the 𝛽 hydrogens, and 3.3 for the 𝛼 hydrogen. Assume that the methyl

hydrogens and 𝛽 hydrogens are not resolved, that is, all of the hydrogens

in each of the two classes have a single resonance peak. Indicate the

integrated intensity of the resonances for each resonance.

b. Sketch the proton COESY spectrum of l-leucine, indicating the cou-

pling that should give rise to off-diagonal peaks.

13-4. Two common structures found in proteins are the 𝛼-helix and 𝛽-sheet ( parallel

and antiparallel), as discussed in Chapters 3 and 9. The approximate distances

in Å between protons for the two structures are given below:

𝛼-Helix 𝛽-Sheet

Amide H–amide H 2.8 4.2

𝛼-Carbon H–amide H 3.5 2.2

𝛼-Carbon H–(amide H)i + 3 3.4 >5

The subscript i + 3 means the 𝛼-carbon is i + 3 residues away from the amide

proton. Indicate how the measurement of NOEs could be used to distinguish

these structures by considering the expected relative intensities of the NOEs

for the three classes of protons in the table.
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13-5. a. Use Eq. (13-3) to construct a plot of the resonant frequency for an elec-

tron as a function of the field strength from 0 to 4 Tesla.

b. Show schematically the splitting expected in the energy levels if the

unpaired electron is located next to a nuclear spin of 3/2.

13-6. An RNA structure containing uracil and adenine was studied by NMR. The

structures of these two bases are given below.

H6 N6

H6

N1

N3

N9

N7

C4

C4

O4

N3 H3

C8
H8

C5

H5

C5C6

H6

N1 C2

C6

O2

C2

H2

A

R

R

U

a. In a 2JNN COSY-type experiment with 15N-enriched RNA, scalar

couplings were observed between N3 of uridine and N1 of adenine

[A. J. Dingley and S. Grzesiek, J. Am. Chem. Soc. 120, 8293 (1998)].

In addition, in a NOESY-type experiment, an NOE was observed

between H3 of uridine and H2 of adenine. Postulate a structure for the

hydrogen-bonded dimer formed between uridine and adenine.

b. As the pH of the solution is lowered, the chemical shift of adenine N1

shifts downfield, and at sufficiently low pH (<4), the scalar coupling and

NOE disappeared. Explain this result. (This experiment was not actually

done, but this is the expected result.)

c. With free adenosine, this same chemical shift is observed, but it occurs

at much lower pH values. Explain this result.

13-7. The spectrum of pure methanol is shown in (a) below. When HCl is added, the

spectrum is that shown in (b) [Z. Luz, D. Gill, and S. Meiboom, J. Chem. Phys.
30, 1540 (1959)].

S
ig

na
l

(a) (b)

Magnetic field

4.9 cps
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a. Explain this result.

b. The rate of the proton exchange reaction

CH3OH2
+ + CH3OH → CH3OH + CH3OH2

+

can be written as R = k[CH3OH2
+][CH3OH] where the rate constant k

has a value of about 108 M−1 s−1. The chemical relaxation time, 𝜏, for

this reaction is 𝜏 = 1/(k[CH3OH2
+]). If the above reaction is responsible

for the doublet in the spectrum becoming a single peak, estimate the

concentration of HCl at which the doublet disappears. Is this consistent

with the autoprotolysis constant for methanol: [CH3O−][CH3OH2
+] =

2 × 10−17 M2?





CHAPTER 14

Applications of Magnetic Resonance to
Biology

14.1 INTRODUCTION

Magnetic resonance has been widely applied to biological systems; therefore, the

selection of examples to illustrate the information that can be obtained is necessarily

quite arbitrary. We first consider some examples of structural determinations utilizing

NMR. As previously indicated, the advantage of NMR is that structures in solution

can be obtained and variation of these structures in different environments can be

readily assessed. The primary drawback of NMR is that only relatively small struc-

tures can be easily determined. However, as discussed in Chapter 13 and exemplified

in the subsequent sections, new NMR methodology permits the study of very large

structures in some cases. In addition, NMR can provide important information about

biological systems other than macromolecule structures, as will be illustrated. In the

case of ESR, spin labels and paramagnetic ions can provide unique information, espe-

cially in unusual environments such as membranes.

14.2 REGULATION OF DNA TRANSCRIPTION

The regulation of transcription is of central importance in biology. We have previously

discussed the use of CD to study zinc fingers, a structure of special importance for

the interaction of transcription factors with DNA (Chapter 11). In this section, we

consider the structure of cyclic AMP response element-binding protein (CBP). It is

a large transcriptional adapter protein that mediates transcription responses to intra-

and extracellular signals (cf. Refs. 1, 2). This class of proteins has been implicated

in the regulation of cell growth, transformation, and differentiation. Defects in this

regulator are involved in a multitude of human diseases. The CBP interacts with a

variety of transcription factors and other components of transcription regulation to

mediate cellular activities.

CBP itself is a very large protein, more than 2000 amino acids, but contains a

number of distinct structural and functional domains. Three putative zinc-binding

Physical Chemistry for the Biological Sciences, Second Edition.
Gordon G. Hammes and Sharon Hammes-Schiffer.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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domains (zinc fingers) were identified by sequence homology. The CH3 domain was

selected for study because not only is it a representative zinc finger structure, but it

also binds known transcription factors (3). Constructs of varying length were exam-

ined, but the final studies were done on an amino acid sequence that was 88 residues

long. It contains 13 cysteine and 5 histidine residues. Nine of the cysteine residues

were coordinated to Zn2+. This was ascertained from the chemical shifts of 13C𝛽

of cysteine. The cysteines that were not coordinated to Zn2+ had chemical shifts

of 26.5 – 27.1 ppm, whereas the cysteines bound to Zn2+ had chemical shifts of

29.2 – 30.7 ppm. The three Zn2+-coordinated histidines also displayed a downfield

shift of 8–9 ppm for a 13C ring resonance of the imidazole and an upfield shift for

an 15N resonance. Thus, the sites of metal coordination could be determined from

one-dimensional NMR. Three Zn2+ ions are bound per CH3 domain.

If Zn2+ is absent, the NMR spectra indicated a disordered structure. However,

in the presence of the metal, a well-defined structure formed. This can be seen in

Figure 14-1, where the HSQC spectrum is shown for the protein with three bound

Zn2+ atoms. Many additional cross peaks can be seen in the presence of Zn2+. The

structure was solved using three-dimensional heteronuclear spectra of uniformly
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FIGURE 14-1. The 600 MHz proton–nitrogen HSQC spectrum of TAZ2 (CH3) domain, a

portion of the c-AMP response element-binding protein, with three bound Zn2+. Many cross

peaks can be seen. Some of the amino acid assignments for the resonances are indicated.

Reprinted from R. N. De Guzman, H. Y. Liu, M. Martinez-Yamout, H. J. Dyson, and P. E.

Wright, Solution Structure of the TAZ2 (CH3) Domain of the Transcriptional Adaptor Protein

CBP, J. Mol. Biol. 303, 243 (2000). © 2000, with permission from Elsevier.
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labeled 15N and 15N, 13C proteins. The structure determination involved the fitting

of NOESY and dihedral angle constraints. In addition, an energy minimization

was carried out to arrive at the final structure(s). Energy minimization is a theo-

retical calculation of the minimum Gibbs energy for the structure, making use of

empirical equations for the intramolecular interactions. The final structure is shown

in Figure 14-2 in the usual format, namely, the best-fit superposition of multiple

structures, in this case 20. In essence, this representation provides a measure of

the uncertainty in the final structure. The cysteines and imidazoles are also shown

as ball-and-stick representations to indicate how the Zn2+ is bound to the protein.

Table 14-1 is a brief summary of some of the NMR constraints used to determine

the structure and the deviations from ideal covalent geometry.

The structure contains four 𝛼-helices and three histidine(cysteine)3 Zn2+ binding

motifs. The helices are tightly packed to form a hydrophobic core. Two of the metal

binding regions are quite similar, but the structure of the third is noticeably different.

Although detailed data were not presented, preliminary results suggest that the struc-

ture of the CH1 domain is quite similar to that of CH3. Surprisingly, the structures

of these zinc fingers are different than others that have been determined, presumably

because of unique steric constraints within the structure.

FIGURE 14-2. NMR structure of the TAZ2 (CH3) domain of CBP. A superposition of 20

structures is shown. The orange balls are Zn2+, the yellow ball-and-stick representations are

cysteines, and the purple and blue structures are imidazoles from histidines. The four 𝛼-helices

can be easily discerned. PDB entry 1F81. Copyright by Professor David C. Richardson.

Reprinted with permission. Kinemage graphics, then rendered in Raster3D.
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TABLE 14-1. NMR Restraints and Statistics for the Structure of the

TAZ2 (CH3) Domain

A. NMR restraints

Total NMR restraints 1030

Distance restraints 846

Intraresidue 145

Sequential 286

Medium range 252

Long range 163

Total dihedral angle restraints 184

B. NOE violations

Average violation (Å) 0.11 ± 0.04

Maximum violation (Å) 0.25

C. Deviations from ideal covalent geometry

Bond lengths (Å) 0.0057 ± 0.0001

Bond angles (deg) 2.41 ± 0.02

R. N. De Guzman, H. Y. Liu, M. Martinez-Yamout, H. J. Dyson, and P. E.

Wright, J. Mol. Biol. 303, 243 (2000).

As mentioned at the outset, the structure of the CH3 domain is of special inter-

est because it mediates protein–protein interactions that are crucial for regulation

of transcription. The interaction with a small peptide (eight residues) from p53, a

known activator, with CH3 was investigated with NMR. A specific interaction was

found by following shifts in both the backbone and side chains in HSQC spectra.

The largest chemical shifts were observed for a small number of residues in three

of the helices so that the portion of CH3 interacting with the ligand could be iden-

tified. The dissociation constant for the interaction of the peptide and CH3 is about

300 μM.

This study indicates the variety of information that can be obtained with NMR: the

structure of an important biological molecule was determined; the specific residues

binding the Zn2+ were determined; and the binding region for the interaction of CH3

with a regulatory molecule was identified.

14.3 PROTEIN–DNA INTERACTIONS

Proto-oncogenes are segments of DNA that code for proteins that have a normal

function, but can be mutated or altered to become cancer-causing oncogenes. One

of these, c-myc, encodes a nuclear protein involved in the regulation of transcription.

The expression of c-myc is in turn regulated by FUSE binding protein (Far-UpStream

Element). This protein binds to single-stranded DNA (ssDNA) that is about 1500 base

pairs upstream from the c-myc promoter. This protein, FBP, contains four homolo-

gous repeats (KH) that are separated by linkers of varying lengths (4,5). The minimal

ssDNA binding domain is designated as KH3–KH4. The structure of the KH3–KH4
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domain bound to ssDNA (20 – 29 nucleotides long) has been solved using multidi-

mensional NMR (6). The total molecular weight of the complex is about 30,000, and

3153 NMR restraints were used to determine the structure. A representation of the

best-fit structure for the KH3–ssDNA is shown in Figure 14-3. The ssDNA is shown

as a ball-and-stick model, whereas the protein chain is shown to delineate the overall

fold and the 𝛼-helices and 𝛽-sheets.

The protein fold has three 𝛼-helices packed onto a three-stranded antiparallel

𝛽-sheet. The ssDNA binds in a groove formed by helices 1 and 2. The center of the

groove is hydrophobic and the edges are hydrophilic so that the DNA bases point

toward the center and the sugar phosphates toward the left-hand side of the protein.

As expected, recognition of the DNA involves a number of intermolecular hydrogen

bonds. This protein binding scaffold for nucleic acid binding can be fine-tuned for

either ssDNA or RNA. The KH3 and KH4 domains do not interact with each other.

The flexible linker between the domains is 30 amino acids long. NMR relaxation

time measurements indicate that the two domains wobble with respect to each other,

with time constants of nanoseconds. The flexibility of the domains appears to be of

functional significance. If the flexibility of the motion is restricted by deleting four

of the DNA bases in the intervening ssDNA between domains, the c-myc expression

is reduced by a factor of four, whereas adding four bases has no effect.

FIGURE 14-3. Structure of a KH3-DNA complex determined with NMR. The DNA (10 mer)

is shown in magenta as a ball-and-stick model, and the protein backbone is in cyan. PDB entry

1J5K. Copyright by Professor David C. Richardson. Reprinted with permission. Kinemage

graphics, then rendered in Raster3D.
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What is the significance of this structure? The functional concept is that DNA

transcription can be controlled at a significant distance along the DNA by recog-

nition of the ssDNA that is formed during transcription. The structure determined

shows that the regulatory element (FUSE) upstream from the c-myc promoter is rec-

ognized specifically and forms a very stable complex with the FBA. This work, when

combined with functional studies, can be used to construct a mechanism for transcrip-

tional control. Furthermore, the overexpression of c-myc has been linked to cancer:

the loss of FBP prevents c-myc expression and halts cellular proliferation. The disrup-

tion of the FBP–ssDNA interaction, therefore, is a potential target for cancer therapy.

14.4 DYNAMICS OF PROTEIN FOLDING

Understanding how proteins fold into their native conformation is of central impor-

tance in biology. First, protein folding is a necessary part of cellular metabolism and

development. Second, understanding how proteins fold provides information about

the intramolecular forces in proteins. Many proteins fold and unfold very fast, in times

less than a second, so that study of the dynamics of protein folding requires special

methods, including the use of NMR (cf. Ref. 7). Protein folding has been previously

discussed in Chapters 3 and 11.

A prototypical fast folding protein is the N-terminal domain of bacteriophage 𝜆

repressor, a crucial molecule in gene regulation (cf. Ref. 8). The structure of the

N-terminal domain has been determined with both crystallography and NMR, and

it is essentially identical to the full-length version of 𝜆 repressor. The protein unfolds

in a simple two-state process, both thermally and in the presence of urea. The folding

reaction can be written as

N
ku−−−−−→←−−−−−
kf

D (14-1)

where N and D are the native and denatured states, respectively, and kf and ku are the

first-order rate constants for folding and unfolding, respectively.

The aromatic region of the NMR spectrum is quite different for the native and

denatured states as shown in Figure 14-4, where the NMR spectra are shown at

various urea concentrations (9–11). Both the native and denatured states show

well-resolved spectra. Some of the central peaks are in fast exchange at all urea

concentrations so that only sharp resonances are observed, and the resonance most

downfield is in slow exchange. However, some of the peaks show broadening at

intermediate urea concentrations because the rate of interconversion of the native

and denatured states is comparable to the chemical shift between the native and

denatured resonances, about 100 cps.

The resonances chosen for analysis are associated with two specific tyrosine

residues. The analysis of the data calculated the line shapes from theoretical con-

siderations and compared the calculated and experimental line shapes with varying

rates of reaction until the two matched. Basically, this measured the effect of the

reaction rate on the spin–spin relaxation time, T2, and yielded the relaxation time for

the reaction in Eq. (14-1), 𝜏 (Eq. (13-8)). The reciprocal of the relaxation time for the
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FIGURE 14-4. NMR spectra of the aromatic region of 𝜆 repressor at various concentrations

of urea. Differences between the native and denatured states (top and bottom) can be seen.

The sharp peaks in the middle are in fast exchange. At intermediate urea concentrations, line

broadening of several of the peaks can be seen because of chemical exchange. Analysis of the

line broadening permitted determination of the rate constants for the interconversion of the

native and denatured proteins. Reprinted in part with permission from J. K. Myers and T. G.

Oas, Biochemistry 38, 6761 (1999). ©1999 by American Chemical Society.
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chemical reaction is the sum of the two rate constants (Chapter 5). The proportion

of the protein present in the native and denatured states can be derived from the

line shape analysis as it is directly proportional to the strength of the resonance for

each state. Thus, the individual rate constants can be directly determined. The rate

constants vary linearly with the urea concentration but are in the range of 102 – 103

s−1. When extrapolated to zero urea concentration, the rate constants for folding and

unfolding are 3600 s−1 and 27 s−1 at 37∘C, respectively, for the particular variant of

the 𝜆 repressor studied (9).

Why does this protein fold so fast? It is relatively small, only 79 amino acid

residues, but some proteins of this size fold much slower. A unique feature of this

protein is that the only significant secondary structural elements are 𝛼-helices, which

are known to wind and unwind in microseconds or less. In contrast, 𝛽-sheet struc-

tures form and break down considerably slower. The detailed folding mechanism has

been explored further by site-specific mutagenesis of amino acid residues. The results

obtained suggest that minor modifications, such as changing two glycines to alanines

or disruption of a single hydrogen bond, can have significant effects on the fold-

ing mechanism. The results further suggest that formation of one of the five helical

stretches may be a crucial slow step in the folding mechanism.

Knowledge of the kinetics of fast folding proteins provides unique information

about the folding mechanism, and NMR provides one of the few methods available

for studying these very fast reactions.

14.5 RNA FOLDING

The folding of RNA into functional structures is of obvious importance to biology.

The mechanism of folding appears to be more complex than that for proteins (cf.

Ref. 12). A number of structures exist that have similar Gibbs energies so that

molecules can become trapped in nonfunctional structures. Furthermore, because

RNA molecules are highly charged, the structures formed are very dependent on the

ionic environment, particularly on the concentration of Mg2+. A frequently invoked

mechanism is that two major structural changes occur in the folding reaction. First,

stable secondary structures form on the microsecond time scale. Secondary structure

is defined as local structural elements such as helices, due to base pairing. The

second stage is formation of tertiary folding that brings the secondary structural

elements together. This is similar to the mechanism of protein folding discussed

earlier. The study described subsequently suggests that this picture is too simple in

many cases.

We have previously discussed ribozymes (Chapters 6 and 9). The folding of a

self-splicing RNA from Tetrahymena has served as a prototypical example of RNA

folding (13,14). This group I intron consists of two large domains, labeled P4–P6 and

P1–P2/P3–P9. The stable P4–P6 domain folds independently, and its crystal struc-

ture has been determined by X-ray crystallography (15,16). Within this structure are

three helices, labeled P5abc, and the structure of this RNA has been studied with

NMR (17). The P5abc RNA can fold independently, and its structure is amenable to

determination by NMR.
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To arrive at a structure, the one-dimensional proton NMR spectrum was obtained

for the imino protons, which are involved in the hydrogen bonding of base pairs. An

A–U base pair has one imino proton, and a G–C base pair has two imino protons.

A two-dimensional NOESY study was then carried out to determine which imino

protons were close to each other. Interpretation of these spectra required assign-

ment of each of the resonance peaks in the one-dimensional spectrum to specific

bases in the RNA. The imino protons of guanine and uracil give rise to very sharp

NMR resonances in the 10–15 ppm range. This suggests that a single conformation is

present and no aggregation is occurring. In the NOESY spectrum, the diagonal peaks

corresponded to the one-dimensional spectrum, and each cross peak connected two

diagonal peaks, which implies that the two protons are within 5 Å of each other.

Neighboring base pairs give rise to NOEs and helped establish the assignments of

specific resonance peaks and the secondary structure of the RNA.

The results are summarized in Figure 14-5, where the secondary structure of the

56-nucleotide RNA is shown. The arrows indicate the connectivity established by

the NOESY experiments, often called an “NOE walk.” Included in the structure are

disks that indicate the locations of the imino protons, all of which are involved in base

pairs.
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FIGURE 14-5. Secondary structure of the 56-nucleotide RNA ribozyme fragment. The disk

between each base pair represents the imino protons that are observed by NMR. The arrows

represent the connectivity established by the NOESY experiments. The dotted arrow NOE

was not observed because the resonances could not be resolved. Reproduced with permission

from M. Wu and I. Tinoco, Jr., Proc. Natl. Acad. Sci. USA 95, 11555 (1998). © 1998 National

Academy of Sciences, USA.
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The NMR results give a quite clear picture of the secondary structure. Surprisingly,

when this structure was compared with that determined with X-ray crystallography,

the two structures were found to be different. In the crystals, the hydrogen bond-

ing of six base pairs is broken (two G–C, one A–U, and three G–U) and four new

G–C base pairs are formed, as well as two nonstandard A–U pairs. In addition, a

tetraloop is disrupted, and other changes occur. The calculated Gibbs energy of the

secondary structure of the RNA crystal structure is actually higher than that of the

NMR secondary structure.

However, this difference in Gibbs energy is more than compensated for by inter-

actions within the tertiary structure. These structural differences can be reconciled if

Mg2+ is added to the solution. The addition of this metal results in a conversion to a

new structure that is identical to that found in the crystal structure. In fact, two sets of

resonances are seen, indicating that the two structures are slowly interconverting. In

this case, slow means with a rate constant less than 30 s−1. (This is determined by the

differences in chemical shifts between the two structures.) In terms of the structure,

the interactions of RNA with Mg2+ alter both the secondary structure and the ter-

tiary structure. This change in structure is shown schematically in Figure 14-6. In the
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crystal structure as filled circles. The solid bars between bases represent Watson–Crick pairing,

and the open bars represent non-Watson–Crick base pairing. Note the changes in base pairing

caused by the presence of Mg2+. Reproduced with permission from M. Wu and I. Tinoco, Jr.,

Proc. Natl. Acad. Sci. USA 95, 11555 (1998). © 1998 National Academy of Sciences, USA.
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fully folded RNA, a cluster of five Mg2+ ions are coordinated to phosphate oxygens,

indicating that the tertiary folding occurs on a Mg2+ core.

The significance of these results in understanding RNA folding is that the pre-

formed secondary structure cannot be assumed to be the direct precursor of the final

tertiary structure (17,18). In other cases, this has been found to be a valid assump-

tion. It also indicates that many stable conformations are available for RNA within a

range of salt and Mg2+ concentrations. This makes the delineation of the physiolog-

ical folding mechanism for RNA more difficult than that for proteins, where a more

restricted number of stable conformations probably exists.

In a follow-up study, site-specific mutations of the P5abc RNA fragment were

made to explore the balance between tertiary and secondary structures (19). In par-

ticular, point mutations designed to disrupt the secondary structure greatly affected

the Mg2+-dependent folding into the new structure. Moreover, two single-point muta-

tions are sufficient to prevent the rearrangement of the secondary structure observed in

the crystal structure. However, if the same experiments are carried out with the P4–P6

domain, formation of the tertiary structure is sufficient to alter the secondary structure

of P5abc, as observed with the native P5abc RNA, even with the point mutations. The

message of this work is that the balance between tertiary and secondary structure is

very delicate in RNA. It depends on both the ionic conditions and the context of the

RNA domains. This is likely to be a general feature of RNA structure/folding.

14.6 LACTOSE PERMEASE

Transport proteins are integral membrane proteins that are responsible for the flow

of many metabolites across the cell membrane. Two broad classes of transport mech-

anisms exist, facilitated diffusion and active transport. Facilitated diffusion depends

on a concentration gradient, and the molecules being transported flow from a higher

to a lower concentration. Selectivity is due to the size of the pore and/or gating of the

channel by a stimulus. For example, Gram-negative bacteria contain several porins,

34–38 kDa proteins, in their outer membranes. The porins permit molecules and ions

with a molecular mass of about 600 to enter. The molecules that are transported

include maltodextrins, sugar phosphates, and chelated iron. Glucose and HCO−
3

are

also generally transported across membranes by facilitated diffusion. In active trans-

port, material is carried across the membrane against a concentration gradient, from

low to high concentration. Active transport must be coupled to an electrochemical

gradient created by a free energy favorable process such as the hydrolysis of ATP.

Lactose permease (LacY) is responsible for all of the translocation reactions car-

ried out by the galactoside transport system in E. coli. It couples the Gibbs energy

associated with the collapse of a proton gradient, that is, transport of protons, with

the energetically uphill translocation of galactosides against a concentration gradi-

ent. The lactose permease from E. coli has been extensively studied (cf. Ref. 20), and

ESR has been one of the tools used to elucidate its structure in the membrane. The

protein has been purified, reconstituted into proteoliposomes, and shown to be solely

responsible for the galactoside transport.
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The crystal structure of lactose permease is now known (21), but prior to the

structure determination, the primary features of the molecule had been determined

by less direct methods such as mutagenesis, chemical cross-linking, and ESR. Lac-

tose permease has a molecular weight of about 45,500, and the structure contains 12

𝛼-helices passing through the membrane, linked by loops on each side of the mem-

brane. The structure is shown schematically in Figure 14-7. A hydrophilic cavity is

formed between the helices that alternately faces the inside and outside of the cell

as the sugar is transported. We will not be concerned about the detailed mechanism

of transport here, but rather with the structural information that was obtained from a

series of ESR studies. In simplistic terms, the mechanism consists of a series of sugar

and proton bindings that result in the conformation of the protein switching between

conformations that expose the hydrophilic cavity to the appropriate side of the mem-

brane. The structural models for the inward- and outward-facing conformations are

shown schematically in Figure 14-8: note the complex arrangement and distortions

of the helical rods that make up the structure.

Site-directed spin labeling of lactose permease can be carried out by introduction

of a single cysteine residue into a protein with no cysteines, and then labeling the thiol

with a nitroxide spin label. The protein with no cysteines (prepared by site-specific

mutagenesis) retains its transport activity. In the initial set of experiments (22), three

derivatives were prepared with cysteines at amino acid positions 148 (helix V) and

228 (helix VII), 148 and 226 (helix VII), or 148 and 275 (helix VIII). A nitroxide spin

label was then covalently linked to the cysteines. The ESR spectra showed relatively

broad lines for all three pairs, suggesting that the nitroxides were relatively immo-

bile due to strong interactions with their environment, nearby protein and membrane.

Additional broadening could be detected at low temperatures for the 148/228 and

148/275 pairs due to close proximity of the nitroxides (spin–spin interactions). Anal-

ysis of this additional broadening indicates that the spin labels are within about 15 Å

NH2

COOH
Cytoplasm

Periplasm

I II III IV V VI VII VIII IX X XI XII

FIGURE 14-7. Secondary structure model of lac permease. The permease has a hydrophilic

N-terminus, followed by 12 𝛼-helical hydrophobic domains that are connected by hydrophilic

loops, and a hydrophilic C-terminus. Adapted with permission from J. Wu, J. Voss, W. L.

Hubbell, and H. R. Kaback, Proc. Natl. Acad. Sci. USA 93, 10123 (1996). © 1996 National

Academy of Sciences, USA.
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FIGURE 14-8. Schematic representation of the inward and outward-facing conformations

of lac permease. The mechanism of lactose transport involves alternating these conforma-

tions. Lactose is shown as a space-filling molecular structure. Adapted with permission from

J. Abramson, I. Smirnova, V. Kasho, G. Verner, H. R. Kaback, and S. Iwata, Science 301, 610

(2003). © 2003 AAAS.

of each other. These results suggest that position 148 in helix V is in close proximity

to position 228 in helix VII and position 275 in helix VIII. Chemical cross-linking

experiments indicate that position 148 is closer to helix VII than to helix VIII. On the

other hand, the lack of spin–spin interactions between positions 148 and 226 suggests

that cysteine 226 is on the opposite face of helix VII from cysteine 228.

In a second study (23), a high-affinity Cu2+ binding site was created on lactose

permease by replacing Arg 301 (helix IX) and Glu 325 (helix X) with His residues.

In addition, a series of proteins with single cysteines at various positions in helices II,

V, or VII were prepared, and nitroxide spin labels were attached to the cysteines. The

ESR spectra of the nitroxides varied, depending on their locations. Those interacting

within the protein structure were broad, indicating restricted rotation, whereas those

directed away from the interior of the protein were much sharper, indicating freer

rotation. When Cu2+ was added, some of the lines broadened due to interaction of

the unpaired electron of the metal ion with the spin label. This permitted a mapping

of the cysteines with respect to the metal ion. When these results were combined with

those from chemical cross-linking, fluorescence, and other techniques, a model for

the helix packing could be developed. Additional experiments of this type utilized the

interaction of Gd(III) with spin labels to provide confirmation that helix V lies close

to both helices VII and VIII (24).

Single cysteines also were introduced at positions 126–156, and the cysteines were

derivatized with nitroxide spin labels (25). The dynamics of these labels varied from

highly mobile to highly immobilized, as judged by the broadness of the spectra. These

results can be interpreted in terms of structure in that enhanced mobility can be inter-

preted as increased accessibility of the side chain. In addition, spectral broadening

due to addition of paramagnetic species (potassium chromium oxalate and oxygen)

provided further information about the accessibility of the spin labels to the solvent.

These experiments provide information about both the structure and the dynamics of

the protein side chains.
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These extensive ESR studies provide detailed structural information about

a membrane-bound protein. Such information is difficult to obtain because

membrane-bound proteins are not readily accessible to the large cadre of techniques

that can be applied to soluble proteins. In this case, a crystal structure has been

obtained that is in reasonable accord with the more indirect methods used. The

studies of lactose permease serve as a useful paradigm for the investigation of the

structure of membrane-bound proteins.

14.7 PROTEASOME STRUCTURE AND FUNCTION

As a final example of an important biological system studied with NMR, the pro-
teasome is considered. The proteasome is a molecular device that removes damaged

and misfolded proteins from eukaryotes and archaea. It is critical for the regulation of

important cellular processes, including cell division and signal transduction. The pro-

teasome is a megadalton structure consisting of many different polypeptide chains.

NMR studies have been carried out on a 670,000 dalton 20S core particle form Ther-
mosplasma acidophilum (26–28). It consists of four homoheptameric rings made up

of two polypeptide chains, 𝛼 and 𝛽, that are stacked to form three interconnected cav-

ities. Two of the cavities are antechambers, 𝛼7𝛽7, which the substrates pass through

to reach the chamber in which peptide bond hydrolysis occurs, 𝛽7 𝛽7. Access to the

catalytic chamber occurs through gated pores at each end of the catalytic chamber.

The 20S proteasome is too large to study by conventional NMR, but this limita-

tion was overcome by labeling isoleucine, leucine, and valine methyl groups with

protons in an otherwise deuterated background. Sprangers and Kay (26) were able to

assign NMR resonances to approximately 90 of the methyl groups in the 𝛼 polypep-

tide chains using TROSY methodology. Some of the residues inside the antechamber

providing access to the catalytic chamber were found to undergo correlated motions

on the millisecond time scale that may be related to passage of the substrate through

the proteasome. A molecular gating system was suggested on the basis of these exper-

iments.

A subsequent study (27) examined protein substrates within the antechambers,

also using TROSY. The actual proteolysis of protein substrates occurs on unstruc-

tured proteins rather than on proteins in their native structures. Three different sub-

strate proteins were shown to interact with the antechamber walls so that they were

maintained in unstructured states. Thus the antechambers alter the properties of the

substrates so that they exist in an unstructured state in order to provide a substrate

that can be readily hydrolyzed.

As might be expected, the activity of the proteasome is highly regulated. The core

proteasome exists in multiple conformations that are readily interconverted. The 11S

activator binds about 75 Å from the catalytic site so that the activation of proteol-

ysis must be indirect. NMR studies of the binding of the 11S activator to the core

proteasome demonstrated that changes in the relative populations of the proteasome

conformers occur upon binding and alter proteolysis patterns (28). This suggests that

changes in protein conformations are responsible for regulation of the activity of the
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proteasome. Regulation of this type (allostery) is discussed in Chapter 17. This ele-

gant work demonstrates that NMR can provide unique information about very large

molecular complexes by overcoming resolution limitations with special methods.

14.8 CONCLUSION

These selected examples of the application of magnetic resonance methods to biology

are a small fraction of the many interesting investigations that have been carried out.

Note that in each case, important questions were being asked about structure and

function. In point of fact, the biological problem is the most significant aspect of these

studies, and magnetic resonance is one of many spectroscopic/biochemical tools that

can be used for the elucidation of these problems.
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CHAPTER 15

Fundamentals of Statistical Mechanics

15.1 INTRODUCTION

Statistical mechanics provides a bridge linking microscopic molecular properties and

macroscopic thermodynamic properties. Equilibrium statistical mechanics deals with

the average behavior of large numbers of molecules. In this chapter, we start by intro-

ducing the kinetic model of gases, which relates the microscopic properties of an

ideal gas to macroscopic properties such as temperature and pressure. An important

outcome of this discussion is an expression relating the average molecular speed to

the temperature of the system. We then move on to the topic of statistical mechanics,

initially considering systems comprised of noninteracting molecules but later extend-

ing this treatment to describe more realistic systems with interacting molecules. This

section includes a derivation of the Boltzmann distribution, which relates the popula-

tions of molecular states to the energies of these states. Along the way, we also define

new concepts that are central to statistical mechanics, such as partition functions and

ensembles. The partition function is a measure of the thermally accessible states in a

system and contains thermodynamic information required to calculate quantities such

as internal energy and entropy. This discussion also provides a statistical definition of

entropy, which is consistent with our previous thermodynamic definition of entropy

but provides additional insights at the molecular level.

The concepts of statistical mechanics are directly applicable to biological systems.

The last section of this chapter applies these ideas to the helix-coil transition in

polypeptides. In Chapter 16, the fundamental concepts of statistical mechanics pro-

vide the framework for understanding computational methods developed for studying

biological systems. Many of the ideas discussed in this chapter, such as the relation

between temperature and velocities, the molecular description of entropy, and the

definitions of statistical ensembles, are central to the simulation of protein folding,

protein dynamics, and a wide range of other biological processes.

15.2 KINETIC MODEL OF GASES

The kinetic model of gases allows us to understand macroscopic properties such as

pressure and temperature on a microscopic level. Many of the concepts developed
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in this section will be used in the subsequent sections on statistical mechanics. The

kinetic model is based on three assumptions. First, the gas consists of molecules of

mass m that are moving continuously and randomly. Second, the size of the molecules

is negligible compared to the average distance traveled between collisions. Third,

the molecules interact only through brief, infrequent, and elastic collisions, which

conserve the total translational kinetic energy of the molecules.

We start by considering an ideal gas in a large container and calculating the pres-

sure exerted by the gas on the walls of the container. We assume that this pressure,

P, is due to collisions of the molecules with the walls and use Newton’s equations of

motion to determine the pressure, which is defined to be the force per unit area. The

resulting pressure for n moles of the ideal gas in a box of volume V is:

PV = 1

3
nM⟨v2⟩ (15-1)

Here M= NAm is the molar mass of the molecules, where NA is Avogadro’s number.

Moreover, ⟨v2⟩ is the mean-square speed, defined as the average of the squares of the

speeds of the molecules, where the speed v is simply the magnitude of the velocity

vector. Eq. (15-1) relates the pressure that the molecules exert on the walls of the

container to the mean-square speed of the molecules.

According to the ideal gas law, the product of the pressure and volume is propor-

tional to the temperature T of the system:

PV = nRT (15-2)

where R is the gas constant. Combining Eqs. (15-1) and (15-2), we obtain the

following expression for the mean-square speed:

⟨v2⟩ = 3RT
M

(15-3)

Now we have related the mean-square speed of the molecules to the temperature of

the system. This expression is often expressed in terms of the root-mean-square speed

c, given as

c = ⟨v2⟩1∕2 =
(

3RT
M

)1∕2

(15-4)

Thus, the root-mean-square speed of the molecules is proportional to the square root

of the temperature and inversely proportional to the square root of the molar mass

of the molecules. From a physical perspective, this equation means that molecules

tend to move faster at higher temperatures, and heavier molecules tend to move more

slowly than lighter molecules at a given temperature. However, this equation only

tells us about average quantities and provides no information about the speeds of

individual molecules.

In general, the speeds of the individual molecules vary over a wide range, and colli-

sions continually redistribute the speeds among the different molecules. For example,

a specific molecule may slow down or speed up after a collision. Because we are
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interested in macroscopic properties, we focus on characterizing the distribution of

the molecular speeds rather than determining the speeds of individual molecules. For

this purpose, we define a distribution function f(v), where f(v)dv represents the frac-

tion of molecules with speed between v and v + dv. The form of this distribution

function was derived by Maxwell to be

f (v) = 4𝜋
( M

2𝜋RT

)3∕2

v2e−Mv2∕2RT (15-5)

This distribution function is called the Maxwell distribution of speeds and is depicted

in Figure 15-1.

The Maxwell distribution of speeds is the product of the square of the speed, v2,

and an exponential function that depends on the square of the speed. The prefactor, v2,

causes the distribution function to approach zero as the speed approaches zero, and

the exponential function causes the distribution function to approach zero as the speed

approaches infinity. The dependence of the exponential factor on both the molar mass

M and the temperature T causes this exponential to decay to zero more rapidly for

higher molar mass and lower temperature. Thus, higher speeds are more probable

for lighter molecules and higher temperatures. These trends are illustrated by the

distribution functions shown in Figure 15-1.

To determine the fraction of molecules with speeds between v1 and v2, we calculate

the following integral:

Fraction in range v1 to v2 = ∫
v2

v1

f (v)dv (15-6)

The fraction of molecules with speeds in this range can also be interpreted as the prob-

ability that a molecule will have a speed in this range. This probability is illustrated

by the shaded region in Figure 15-2, which represents the area under the distribution

Low T
Large M

High T
Small M

Speed, v

f(
v)

FIGURE 15-1. Maxwell distribution of speeds, as given by f(v) in Eq. (15-5). The distribution

function is given for two different values of temperature T and molar mass M. These curves

show that higher speeds are more probable for lighter molecules and higher temperatures.
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Speed, v

f(
v)

v1 v2

FIGURE 15-2. Maxwell distribution of speeds, denoted by f(v). The fraction of molecules

with speeds between v1 and v2, as given by the integral in Eq. (15-6), is indicated by the shaded

region. This shaded region can also be viewed as the probability that a molecule will have a

speed in this range.

function f(v) between v1 and v2. The integral of f(v) over all speeds, ranging from zero

to infinity, is unity because all molecules would be included in this integral. In other

words, the area under the entire distribution function curve is unity.

The average speed, or mean speed, can be calculated by summing over the speeds

of all molecules and dividing by the total number of molecules. However, we do not

know the speeds of the individual molecules and instead need to use the distribution

function for this purpose. To understand this procedure, first we consider a system

in which the molecules have discrete speeds, vi, and we determine the fraction of

molecules, pi, that have speed vi. The fraction of molecules pi can also be viewed

as the probability that a given molecule will have speed vi. For this discrete system,

the average speed can be calculated by summing over all possible speeds, multiplying

each value by the probability of that speed occurring. Mathematically, this summation

is expressed as ⟨v⟩ = ∑
i

pivi (15-7)

This summation is equivalent to summing over the speeds of all molecules and divid-

ing by the total number of molecules.

To understand this equivalence, consider a group of six students who took a

quiz worth three points. Three of the students obtained a score of 1, two of the

students obtained a score of 2, and one student obtained a perfect score of 3.

(Perhaps some of these students should have studied a little harder!) To calculate

the average score, we can add up all of the scores and divide by the number of

students: (1+1+1+2+2+3)/6= 5/3. Alternatively, we can calculate the fraction

of students who obtained each score: 1/2 of the students obtained a score of 1, 1/3 of

the students obtained a score of 2, and 1/6 of the students obtained a score of 3. Now

we can calculate the average score by summing over all possible scores, multiplying

each score by the fraction of students who received that score: [(1/2)×1 + (1/3)×2

+ (1/6)×3]= 5/3. It is clear that these two averaging procedures lead to the same
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result. This example clarifies that the expression in Eq. (15-7) is simply another way

of calculating the average of the speeds of the molecules.

Now assume that the speeds can have continuous values, as in the real system. In

this case, the summation becomes an integral, and the probability is given by f(v)dv
instead of pi. In this case, the average speed can be calculated as

⟨v⟩ = ∫
∞

0

vf (v)dv =
(

8RT
𝜋M

)1∕2

(15-8)

Similar to the root-mean-square speed given in Eq. (15-4), the average speed is pro-

portional to the square root of the temperature and inversely proportional to the square

root of the molar mass of the molecules. However, the constants of proportionality

are different for these two different types of speeds.

We can also calculate the most probable speed, c*, which is the speed at which the

distribution function has a maximum. This speed can be determined by differentiating

f(v) with respect to v and finding the value of v for which this derivative is zero. Setting

the derivative of f(v) to zero leads to

df (v)
dv

= 4𝜋
( M

2𝜋RT

)3∕2
[

2v − Mv3

RT

]
e−Mv2∕2RT = 0 (15-9)

and solving for the speed v in this equation leads to the most probable speed:

c∗ =
(

2RT
M

)1∕2

(15-10)

Thus, we have derived equations for the root-mean-square speed (Eq. (15-4)), the

average speed (Eq. (15-8)), and the most probable speed (Eq. (15-10)). In general,

c∗ < ⟨v⟩ < c, so the root-mean-square speed and the average speed are greater than

the speed associated with the maximum of f(v). Moreover, all of these types of speed

increase as the temperature increases and as the molar mass decreases.

In addition to the distribution of molecular speeds, we can also calculate the dis-

tribution of molecular translational energies, denoted g(𝜀). These two distribution

functions are related because the molecular translational energy, which is simply the

kinetic energy, is 𝜀 = mv2∕2. Thus, we can convert f(v) to g(𝜀) through a simple vari-

able transformation from speed to energy. Using this expression for the kinetic energy,

v2 = 2𝜀∕m and d𝜀 = mvdv = (2m𝜀)1∕2dv. This latter relation can be rearranged to

obtain dv = (2m𝜀)−1∕2d𝜀. Substituting these expressions for v2 and dv into f(v)dv with

f(v) given by Eq. (15-5), we obtain an expression for g(𝜀)d𝜀:

g(𝜀)d𝜀 = 2𝜋

(
1

𝜋kBT

)3∕2

𝜀
1∕2e−𝜀∕kBTd𝜀 (15-11)

where kB = R∕NA is Boltzmann’s constant. The function g(𝜀)d𝜀 represents the frac-

tion of molecules with energies in the range between 𝜀 and 𝜀 + d𝜀. We can then
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calculate the average energy of a molecule to be

⟨𝜀⟩ = ∫
∞

0

𝜀g(𝜀)d𝜀 = 3

2
kBT = 3RT

2NA

(15-12)

This expression implies that the average molecular energy is greater for higher

temperatures and is independent of the molecular mass.

It is useful to connect this result for the average molecular energy to thermody-

namics. For an ideal monatomic gas, neglecting electronic degrees of freedom, the

energy of the system arises from only translational energy. Under these assumptions,

the average energy E of a system comprised of n moles of a monatomic gas is the

product of the number of molecules, nNA, and the average energy of one molecule:

E = nNA⟨𝜀⟩ = 3

2
nRT (15-13)

This result is an example of the equipartition of energy principle, which states that

all quadratic contributions to the total energy have the same mean value per mole

of (1/2) RT. For an ideal monatomic gas, there are three quadratic terms in the

three-dimensional translational energy expression, and we obtain an average molar

energy of (3/2) RT.

15.3 BOLTZMANN DISTRIBUTION

To understand how to utilize the energy levels of molecules to calculate thermody-

namic properties, we need to consider the distribution of molecular states. Some of the

basic concepts from the previous section for describing the distribution of molecular

speeds will also be useful for describing the distribution of molecular states. In this

section, we derive the Boltzmann distribution for independent particles, neglecting

the interactions between molecules. The Boltzmann distribution relates the popu-

lations of the molecular states to the energies of these states. In later sections, we

will show how these general concepts can be extended to more realistic systems that

include intermolecular interactions.

Consider a closed system of N noninteracting, independent molecules. Because

we are neglecting interactions between molecules, the total energy of the system is

simply the sum of the energies of the individual molecules. Each molecule can exist in

states with energies E0, E1, E2, and so forth. For simplicity, we assume that E0 = 0 and

measure all other energies relative to E0. At any given time, there are N0 molecules

in the state with energy E0, N1 molecules in the state with energy E1, and so forth.

We define the configuration of the system to be the specification of the populations

for all states and denote the configuration by {Ni} ≡ {N0, N1, N2, … }. The weight
W of a configuration is the number of different ways this particular configuration can

be achieved. The number of ways N molecules can be arranged in N states is N!.

However, there are N0! ways to arrange the N0 molecules with energy E0, N1! ways

to arrange the N1 molecules with energy E1, and so forth. Therefore, the number of
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A

E1

E0

B C

FIGURE 15-3. Schematic depiction of the three possible arrangements for a two-state system

with three molecules, N= 3, and a configuration corresponding to N0 = 1 and N1 = 2, signifying

that one molecule occupies the lower state and two molecules occupy the higher state. The

energies of the two states are E0 and E1, denoted by horizontal lines, and the occupied state for

each molecule is indicated by an X. The three arrangements labeled A, B, and C are associated

with the first, second, and third molecule, respectively, occupying the lower state. For this case,

the weight given by Eq. (15-14) is W= 3, corresponding to the three possible arrangements

shown here.

distinguishable ways of arranging the molecules to obtain the configuration {N0, N1,

N2, … } must be reduced by N0!, N1!, and so forth, leading to

W = N!
N0!N1!N2! …

(15-14)

This expression is just the number of ways of distributing N identical objects with a

particular arrangement given by {Ni}. For example, consider the case for a two-state

system with N= 3 and a configuration corresponding to N0 = 1 and N1 = 2. In this

case, Eq. (15-14) tells us that W= 3, so there are three ways of achieving this config-

uration. Specifically, any of the three molecules can be in the state with energy E0, and

the other two molecules will be in the state with energy E1, as depicted in Figure 15-3.

In comparison, for the configuration corresponding to N0 = 3 and N1 = 0, Eq. (15-14)

tells us that W= 1. In this case, there is only one way to achieve this configuration,

namely for all three molecules to be in the state with energy E0.

For macroscopic systems, it has been shown that a single configuration has a much

greater weight than all others and therefore dominates the properties of the system. In

other words, the system is almost always found in this dominant configuration, and

we can focus solely on this configuration to characterize the system. In this case, our

challenge is to identify this dominant configuration. From a mathematical standpoint,

we want to find the configuration that maximizes the weight W given in Eq. (15-14).

However, we do not have complete flexibility in choosing this configuration. We can

only consider the configurations that satisfy two important constraints. First, the total

number of molecules in the system must remain fixed. We can define the total number

of molecules to be

N =
∑

i

Ni (15-15)

where we are summing over all molecular states. According to this constraint, if we

remove a molecule from one state, we need to add a molecule to another state to

maintain the same number of molecules in the system. Second, the total energy of

the system must remain fixed. The total energy of the system is defined as the sum of
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E2 = 2Δ
E1= Δ
E0 = 0

N0 = 0,

W = 1

N1 = 2, N2 = 0

N0 = 1,

W = 2

N1 = 0, N2 = 1
E2 = 2Δ
E1 = Δ
E0 = 0

X

X

X

X

XX

FIGURE 15-4. Schematic depiction of the allowed arrangements of two molecules over three

states with energies E0 = 0, E1 =Δ, and E2 = 2Δ, where the total energy of the system is con-

strained to be 2Δ. The upper row shows one possible configuration with N0 = 0, N1 = 2, and

N2 = 0. This configuration has weight W= 1, and the single possible arrangement corresponds

to both molecules occupying the state with energy E1. The lower row shows another possible

configuration with N0 = 1, N1 = 0, and N2 = 1. This configuration has weight W= 2, and the

two possible arrangements correspond to one molecule occupying the state with energy E0 and

the other molecule occupying the state with energy E2.

the energies of all molecules:

E = N0E0 + N1E1 + · · ·NiEi + · · · =
∑

i

NiEi , (15-16)

where again the summation is over all molecular states. According to this constraint, if

we move a molecule to a state of higher energy, then we must move another molecule

to a state of lower energy to exactly balance the change in energy so that the total

energy remains constant. A schematic picture of configurations that maintain these

two constraints is depicted in Figure 15-4.

Thus, our goal is to find the configuration that maximizes the weight W while

satisfying the constraints in Eqs. (15-15) and (15-16). Mathematically, it is more con-

venient to work with ln W, the natural logarithm of W, rather than W itself. Using the

expression for W given in Eq. (15-14) and the basic properties of logarithms, we

obtain

ln W = ln
N!

N0!N1!N2! …
= ln N! − ln N0! − ln N1! − … = ln N! −

∑
i

ln Ni!

(15-17)

This expression can be further simplified using Stirling’s approximation,

ln x! = x ln x − x, which is valid for large values of x, to obtain

ln W = (N ln N − N) −
∑

i

(Ni ln Ni − Ni) = N ln N −
∑

i

Ni ln Ni (15-18)

where the last equality arises because the sum over all Ni is N and therefore cancels the

other N in the expression. Note that the maximum of ln W in the absence of constraints

will occur when the second term is zero, corresponding to Ni = 1 for all values of i.
However, this solution does not satisfy the constraints on the number of molecules
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and energy given in Eqs. (15-15) and (15-16). For this purpose, the derivative of ln W
with respect to each Ni is set equal to zero subject to these constraints on the possible

values of Ni. The method of undetermined multipliers then allows us to find the values

of Ni that maximize ln W while still satisfying these two constraints.

In solving this mathematical problem, we find that the populations in the configu-

ration of greatest weight subject to these two constraints are given by

Ni

N
= e−𝛽Ei∑

i

e−𝛽Ei
(15-19)

This expression is called the Boltzmann distribution because Boltzmann derived it

and showed that 𝛽 = 1∕(kBT), where kB is Boltzmann’s constant and T is the ther-

modynamic temperature. This equation shows that the most probable populations of

the states of a system at thermal equilibrium are governed by the thermodynamic

temperature. The left-hand side of Eq. (15-19) is pi = Ni∕N, which is the fraction of

molecules in any state i or, equivalently, the probability that a molecule will occupy

state i . The overall expression relates the populations, or occupation probabilities, of

the states to the energies of the states.

In Eq. (15-19), the summation is over all states of the system, but we can rewrite

this equation so that the summation is over energy levels instead of states. Summing

over energy levels is convenient if several states have the same energy. If gi states

have the same energy, these states are called degenerate with a degeneracy of gi.

In this case, all of the states with the same energy Ei can be grouped together in a

single term that is written as gie
−𝛽Ei . The value of the total summation is exactly the

same for these two types of summations, even though some terms are combined when

summing over energy levels. The Boltzmann distribution involving a summation over

energy levels is expressed as

Ni

N
=

gie
−𝛽Ei∑

i

gie
−𝛽Ei

(15-20)

If the system is nondegenerate, so all degeneracies gi are unity, then this expression

is identical to Eq. (15-19). Even for systems with degeneracies, the populations of

the energy levels calculated from Eqs. (15-19) and (15-20) are identical.

We can use the Boltzmann distribution to calculate the ratio of the number of

molecules in two energy levels with energies Ei and Ej, where Ei < Ej, as

Nj

Ni
=

gje
−𝛽(Ej−Ei)

gi
(15-21)

From this expression, we can understand the behavior of the populations at low

and high temperatures, as well as in the intermediate regime. At zero tempera-

ture, 𝛽 = 1/(kBT) approaches infinity and Nj∕Ni = 0, so only the ground level is

populated. In this case, all of the molecules are in the lowest energy level. As the
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FIGURE 15-5. The populations for a nondegenerate two-state system as a function of the

temperature T. The populations are pi = Ni∕N, as given by the Boltzmann distribution in Eq.

(15-19). These populations can be interpreted as the fraction of molecules in a given state or

the probability of a molecule occupying a given state. At zero temperature, only the lower

state is populated, and as the temperature approaches infinity, the two states become equally

populated.

temperature approaches infinity, 𝛽 = 1/(kBT) approaches zero and Nj∕Ni → gj∕gi, so

the populations become independent of the energies. In this case, the molecules are

distributed among the energy levels according to the degeneracies, and if there are no

degeneracies, all levels are equally populated. For intermediate temperatures, a range

of energy levels is populated. The populations for a nondegenerate two-state system

are depicted in Figure 15-5, illustrating this behavior as a function of temperature.

The qualitative behavior of the molecular state populations at equilibrium can be

analyzed for the different types of molecular energy levels. For translational and rota-

tional energy levels, typically the spacing between levels is much less than kBT at

room temperature, so many energy levels are populated. In contrast, for electronic

energy levels, typically the spacing is much greater than kBT at room temperature, so

only the lowest energy level is significantly populated. The vibrational energy lev-

els are in the intermediate regime: for high-frequency vibrations, which have large

energy level spacings, only the lowest energy level is significantly populated, whereas

for low-frequency vibrations, several of the vibrational states are populated at room

temperature.

Recall from Section 15.2 that an average quantity can be calculated as the sum of

each possible value multiplied by the probability of the occurrence of that value. For

the kinetic model of gases, we used this concept to calculate the average speed. Here

we use this approach to calculate the average energy. The probability of a molecule

occupying a state with energy Ei is pi = Ni∕N, which is given by the Boltzmann

distribution in Eq. (15-20). Using these relations, the average energy can be computed

as

⟨E⟩ = ∑
i

piEi =
∑

i

Ni

N
Ei =

∑
i

giEie
−𝛽Ei

∑
i

gie
−𝛽Ei

(15-22)
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At zero temperature, all of the molecules are in the lowest energy level, and the aver-

age energy is simply E0. This value is the lower bound for the average energy. As the

temperature approaches infinity, all states become equally populated. In this case, the

average energy becomes the average over the energies of all states: ⟨E⟩ = 1

N

∑
i

giEi,

which will approach infinity for a system composed of an infinite number of molecu-

lar states. For the idealized nondegenerate two-state system depicted in Figure 15-5,

the average energy is E0 at zero temperature and approaches the average energy of

the two states, (E0 + E1)/2, as the temperature approaches infinity.

15.4 MOLECULAR PARTITION FUNCTION

The denominator of the Boltzmann distribution is often defined to be the molecular

partition function, given by

q =
∑

i

gie
−𝛽Ei (15-23)

where the summation is over energy levels, and gi denotes the degeneracies of the

energy levels. The molecular partition function indicates the number of states that are

thermally accessible to a collection of molecules at temperature T. The Boltzmann

distribution is often expressed in terms of this quantity because of the simpler form:

pi =
Ni

N
= e−𝛽Ei

q
(15-24)

The partition function can be viewed as the sum of the statistical weights for all con-

figurations of the system, with each term being the statistical weight for that particular

energy. The probability of a specified energy level is then given by the statistical

weight for that energy level divided by the sum of statistical weights (Eq. (15-24)).

We can gain further insight into the physical meaning of the partition function

by considering its dependence on temperature. At zero temperature, 𝛽 = 1/(kBT)

approaches infinity, and the only term that remains in the summation in Eq. (15-23)

is the E0 = 0 term. Thus, the partition function is simply the degeneracy of the

lowest energy level, g0, at zero temperature. As the temperature approaches infinity,

𝛽 = 1/(kBT) approaches zero, and all of the exponentials in the summation in Eq.

(15-23) approach unity. In this limit, the partition function becomes equivalent to the

number of molecular states and thus approaches infinity for a system composed of

an infinite number of molecular states. For the idealized two-state system depicted

in Figure 15-5, the partition function is unity at zero temperature because only the

ground state is accessible and increases to two at higher temperatures because both

states become accessible. If the splitting between the two energy levels is much

smaller than kBT, then the partition function will be nearly two at this temperature

because both states are thermally accessible.

For the remainder of this section, we will derive an explicit expression for the

molecular partition function of noninteracting gas molecules. In general, the energy
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of a molecule is the sum of the following contributions:

𝜀i = 𝜀
T
i + 𝜀

R
i + 𝜀

V
i + 𝜀

E
i (15-25)

where the superscripts refer to translational (T), rotational (R), vibrational (V), and

electronic (E) contributions. Although the separation of these contributions is not

rigorous, we assume that they are separable for simplicity. We can then substitute the

molecular energy given by Eq. (15-25) into Eq. (15-23), summing over states rather

than energy levels for clarity. In this way, we are able to factor the molecular partition

function into four separate contributions:

q =
∑

i

e−𝛽(𝜀
T
i
+𝜀R

i
+𝜀V

i
+𝜀E

i
)

=

(∑
i (T)

e−𝛽𝜀
T
i

)(∑
i (R)

e−𝛽𝜀
R
i

)(∑
i (V)

e−𝛽𝜀
V
i

)(∑
i (E)

e−𝛽𝜀
E
i

)

= qTqRqVqE (15-26)

Here the summations labeled T, R, V, and E are over translational, rotational, vibra-

tional, and electronic states, respectively, and the partition functions defined in the

last equality correspond to these individual contributions. We will calculate each of

these partition functions separately using the energy levels derived in the previous

chapters on quantum mechanics.

The translational energy levels can be determined from the particle in a box model

system studied in Chapter 7. The energy levels for a particle of mass m moving in a

box of length L are given by

En = (n2h2)∕(8mL2) (15-27)

where the quantum number n can be any positive, nonzero integer. The lowest

energy level has energy E1 = h2∕(8mL2), and the energies relative to this level are

En = (n2 − 1)E1. Substituting these values into the expression for the translational

partition function gives

qT =
∞∑

n=1

e−𝛽(n
2−1)E1

Assuming that the splittings between the energy levels are much smaller than kBT,

the summation can be replaced by an integral and evaluated as follows:

qT = ∫
∞

1

e−(n
2−1)𝛽E1 dn ≈ ∫

∞

0

e−n2
𝛽E1 dn = (2𝜋mkBT)1∕2L∕h (15-28)

Here we have approximated the integral by extending the lower limit to n= 0 and

replacing n2−1 by n2 to produce a standard integral that is evaluated analytically

in the final equality. This procedure can be extended to a particle moving in a
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three-dimensional box of volume V, leading to the following expression for the

translational partition function:

qT = V(2𝜋mkBT)3∕2∕h3 (15-29)

This partition function becomes infinity as the temperature approaches infinity

because an infinite number of translational states would become accessible.

The rotational energy levels can be determined from the rigid rotor model system,

equivalent to a particle on a sphere, studied in Chapter 7. The energy levels of a linear

rigid rotor can be expressed as

EJ = hBJ(J + 1) = hcB̃J(J + 1) (15-30)

Here the quantum number J can be any nonnegative integer, and the rotational con-

stant is defined as B̃ = B∕c = ℏ∕(4𝜋Ic) in units of wavenumbers (cm−1), where c is

the speed of light and I is the moment of inertia of the molecule. Each energy level

has a degeneracy of 2J +1. Using these quantities, we obtain the following expression

for the rotational partition function of a nonsymmetric linear molecule:

qR =
∞∑

J=0

(2J + 1)e−𝛽hBJ(J+1) (15-31)

When the splittings between rotational energy levels are much smaller than kBT,

the summation can be approximated by an integral, which in turn can be solved

analytically:

qR = ∫
∞

0

(2J + 1)e−𝛽hBJ(J+1)dJ = − 1

𝛽hB∫
∞

0

d
dJ

e−𝛽hBJ(J+1)dJ =
kBT

hB
(15-32)

Here the second equality involves a simple mathematical manipulation that can be

confirmed by evaluating the derivative in the integral, and the third equality utilizes

the property that the integral of a derivative of a function is the function itself. The

greater the moment of inertia, the larger the rotational partition function because the

spacing between the rotational energy levels is smaller. This property implies that

more rotational states are accessible for large, heavy molecules than for small, light

molecules. These expressions can be extended to nonlinear molecules, leading to

more complicated equations. Moreover, for symmetrical linear molecules, the rota-

tional partition function given earlier should be divided by a factor of two because

a rotation through 180∘ results in an indistinguishable state of the molecule, so the

number of thermally accessible states is half the number that can be occupied by a

nonsymmetric linear molecule.

The vibrational energy levels can be determined from the harmonic oscillator

model system studied in Chapter 7. The energy levels for a harmonic oscillator are

given by

En =
(

n + 1

2

)
h𝜈 (15-33)
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Here 𝜈 is the frequency of the vibrational mode, and the quantum number n can be any

nonnegative integer. The lowest energy level has energy E0 = h𝜈∕2, and the energies

relative to this level are En = nh𝜈. Substituting these values into the expression for

the vibrational partition function gives

qV =
∞∑

n=0

e−𝛽nh𝜈 =
∞∑

n=0

(e−𝛽h𝜈)n = 1

1 − e−𝛽h𝜈
(15-34)

Here we have used the mathematical property that ena = (ea)n for the second equality

and the series expression
∑
n=0

xn = 1∕(1 − x) for the third equality. When the splitting

between the vibrational energy levels, h𝜈, is much greater than kBT, the vibrational

partition function is unity because only the lowest energy vibrational state is accessi-

ble. When the splitting between energy levels is much smaller than kBT, this partition

function becomes qV = kBT∕(h𝜈) using the relation e−x ≈ 1 − x for very small values

of x. In this limit, the partition function is much greater than unity because many

vibrational states are accessible.

The electronic energy levels can be calculated with the electronic structure meth-

ods described in Chapter 8. For most molecules, the splitting between the ground

electronic state and the lowest excited electronic state is much greater than kBT. Thus,

typically the electronic partition function is unity or, if the ground state is degenerate,

the electronic partition function is equal to the degeneracy gE
0

of the ground state:

qE = gE
0

(15-35)

The overall molecular partition function given in Eq. (15-26) can be expressed

as the product of the translational, rotational, vibrational, and electronic contribu-

tions given in this section. Note that the expressions for these contributions are only

approximate because of the various assumptions used to derive the energy levels and

to derive the partition functions from these energy levels. Moreover, the expression

for the overall molecular partition function given in Eq. (15-26) is valid for a sin-

gle molecule in the gas phase and does not account for any type of intermolecular

interactions. The next section will extend these concepts to interacting systems.

15.5 ENSEMBLES

So far our discussion of statistical mechanics has assumed that the systems are com-

posed of noninteracting, independent molecules. In reality, molecules interact with

each other, however, and we need to be able to apply statistical mechanics to inter-

acting systems as well. The key new concept required for the extension of statistical

mechanics to interacting systems is the ensemble. We define an ensemble to be an

imaginary collection of virtual copies of a real system with certain macroscopic prop-

erties specified. Each virtual copy represents a possible state of the real system. Thus,

we can view the ensemble as a probability distribution for the state of the system. For
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FIGURE 15-6. Schematic depiction of a canonical ensemble comprised of a large number

of virtual copies of the real system. All of the virtual copies have the same number of parti-

cles N, volume V, and temperature T. The individual systems are in thermal contact and can

exchange energy in the form of heat, as indicated by the double arrows labeled by E. This

energy exchange occurs among all virtual copies of the system but is only shown for select

pairs in this figure.

this reason, many of the statistical concepts developed in the previous sections for the

distribution of molecular states are directly applicable to ensembles.

We will define three different types of ensembles, namely canonical, microcanoni-

cal, and grand canonical, where each ensemble is defined by the specification of three

macroscopic properties. In a canonical ensemble, all of the virtual copies have the

same number of particles N, volume V, and temperature T. Figure 15-6 depicts a phys-

ical representation of a canonical ensemble, where this type of system is replicated

many times. In this representation, all of the individual closed systems are in thermal

contact with each other to maintain the constant temperature T. Therefore, energy

can be transferred between the virtual copies in the form of heat, and the energy of

each individual system is not constant. However, the total energy of all of the virtual

copies combined is fixed because the overall ensemble is an isolated system.

In a microcanonical ensemble, all of the virtual copies have the same number of

particles N, volume V, and energy E. In comparison to the canonical ensemble, the

energy rather than the temperature of each individual system is fixed. Because all

virtual copies must have the same energy, the individual systems in a microcanonical

ensemble are isolated from each other and are not in thermal contact. As a result, the

temperature within the individual systems is not held constant and can vary among

the different virtual copies.

In a grand canonical ensemble, all of the virtual copies have the same volume V,

temperature T, and chemical potential 𝜇. In this ensemble, the number of particles
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within each individual system is no longer fixed, and the composition within each

copy can fluctuate. Thus, the individual systems within a grand canonical ensemble

are open, rather than closed, and molecules can pass between the individual systems.

As in the canonical ensemble, the individual systems are in thermal contact with each

other and can exchange energy in the form of heat, so the energy of each individual

system is not fixed. The total energy and the total number of particles for all of the

virtual copies combined are fixed because the overall ensemble is an isolated system.

Analogous to the discussion of molecular states in Section 15.3, we consider the

various possible configurations of the ensemble. For a canonical ensemble, the con-

figuration is defined in terms of the energies of the virtual copies within the ensemble.

We assume that the total number of virtual copies in the ensemble is Ñ, and the num-

ber of virtual copies with energy Ei is Ñi. Here we use tildes to distinguish the number

of virtual copies from the number of molecules discussed previously in this chapter.

We can define the weights of these configurations by Eq. (15-14), simply replacing

N and Ni with Ñ and Ñi, respectively. As the number of virtual copies approaches

infinity, we find that a single configuration is most probable by a large margin and

therefore dominates the properties of the system. To identify this dominant configura-

tion, we calculate the configuration of the greatest weight, subject to the constraints

that the total number of virtual copies within the ensemble and the total energy of

the ensemble are fixed. This procedure leads to the canonical distribution, which is

analogous to the Boltzmann distribution given in Eq. (15-19):

Ñi

Ñ
= e−𝛽Ei∑

i

e−𝛽Ei
(15-36)

Analogous to the definition of the molecular partition function q in Eq. (15-23),

we define the canonical partition function Q to be the denominator of this equation:

Q =
∑

i

e−𝛽Ei (15-37)

The canonical partition function contains the thermodynamic information of the sys-

tem and can be used to calculate thermodynamic quantities, such as the internal

energy, entropy, enthalpy, pressure, Helmholtz energy, and Gibbs energy. The next

section discusses the relation between entropy and the canonical partition function.

We can also relate the canonical partition function to the molecular partition func-

tion for the special case of noninteracting, independent molecules. In this case, the

total energy of the system is simply the sum of the energies of the molecules, and the

canonical partition function factorizes into a product of molecular partition functions.

A slight complication arises for indistinguishable molecules, which are defined as

identical, noninteracting molecules, because many of the states counted in the parti-

tion function are not distinguishable. Taking this into account, the canonical partition

function can be expressed as follows for a system comprised of N noninteracting,
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independent molecules:

Q = qN for distinguishable independent molecules

Q = qN∕N! for indistinguishable independent molecules (15-38)

It is important to realize that the canonical partition function is not limited to this

special case but also applies to systems with interacting molecules. For the more

general case of interacting systems, the expressions in Eq. (15-38) are no longer valid.

15.6 STATISTICAL ENTROPY

In the earlier chapters, we described entropy as a measure of the disorder of the

system. Given this background, we might expect that entropy is related to the number

of ways of distributing molecules in a system among the energy levels or, alter-

natively, the number of ways of distributing individual systems within a canonical

ensemble. Boltzmann showed that the entropy is related to W, defined here as the

statistical weight of the most probable configuration of the system, as follows:

S = kB ln W (15-39)

This expression, which is known as the Boltzmann formula for the entropy, provides

a molecular interpretation of the entropy. (This equation was also briefly discussed

in Chapter 2, Eq. (2-14).)

Moreover, the temperature dependence of this statistical entropy is the same as

that of the thermodynamic entropy discussed in early chapters. As the temperature

decreases, the weight of the most probable configuration decreases because fewer

configurations are consistent with the total energy. In other words, fewer energy levels

are accessible at lower temperatures, thereby allowing a smaller number of arrange-

ments among the energy levels. The Boltzmann formula in Eq. (15-39) tells us that

the entropy decreases as the weight of the most probable configuration decreases,

implying that the entropy decreases as the temperature decreases. In the limit of zero

temperature, all of the molecules will be in the lowest energy state, and the most prob-

able configuration has a weight of unity, so W= 1. In this limit, the statistical entropy

defined in Eq. (15-39) will be zero, consistent with the third law of thermodynamics,

which states that the entropy of a perfect crystal approaches zero as the temperature

approaches zero.

We can also relate the entropy to the molecular or canonical partition function. If

we substitute the expression for ln W given in Eq. (15-18) into Eq. (15-39), we obtain

S(T) = kB

(
N ln N −

∑
i

Ni ln Ni

)
= kB

∑
i

Ni(ln N − ln Ni) = −kB

∑
i

Ni ln
Ni

N
(15-40)

Here the second equality used Eq. (15-15) for the simplification, and the third equality

used basic properties of logarithms. Utilizing the Boltzmann probability, performing
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additional mathematical manipulations, and generalizing to the canonical partition

function, we obtain

S(T) = E(T) − E(0)
T

+ kB ln Q (15-41)

Here E(T) is the internal energy of the system and is related to the total energy of

the system defined in Eq. (15-16) by E(T)= E(0) + E because all energies Ei were

defined to be measured relative to the lowest energy E0. Moreover, the internal energy

can be expressed in terms of the canonical partition function as

E(T) = E(0) −
(
𝜕 ln Q
𝜕𝛽

)
V

(15-42)

The derivations of these equations are beyond the scope of this book, but they

illustrate that thermodynamic quantities can be expressed in terms of the partition

function.

15.7 HELIX-COIL TRANSITION

As an example of the application of statistical mechanics to a biologically relevant

problem, the transition between helical and coil structures in proteins is considered.

We have previously discussed the structure of the 𝛼-helix, which is very prevalent in

proteins (Figure 3-4). When a protein is denatured, the helical structure is destroyed

and the protein can be considered to be randomly coiled. This helix-to-coil transition

can be mimicked in synthetic polypeptides. For example, polyglutamic acid exists as

an 𝛼-helix at low pH. When the pH is raised, the carboxyl groups on the side chains

ionize, and the repulsion between the negative charges disrupt the helical structure.

At a sufficiently high pH, polyglutamic acid becomes a random coil. This transition

from 𝛼-helix to random coil occurs over a very narrow range of pH, as illustrated in

Figure 15-7.

The helix-coil transition is an example of a cooperative process. The dominant

features of the helical structure are the hydrogen bonds between peptide linkages

that are four residues apart. To convert a turn in the helix to a coil, three hydrogen

bonds must be broken, or conversely, to form a helical turn from a coil structure,

three hydrogen bonds must be formed. This is the initiation process. After initiation,

propagation of helical breakdown or formation involves only a single hydrogen bond.

Simply stated, initiation is more difficult than propagation. This is the essence of a

cooperative process, namely the process becomes easier after initiation. The bigger

the difference between the ease of ensuing steps relative to initiation, the higher the

degree of cooperativity. For the helix-coil transition illustrated in Figure 15-7, the

cooperativity is shown to be thermodynamic in nature. However, as it turns out for

this case, the cooperativity is also found in the kinetics of the transition.

A theoretical description of the helix-coil transition can be derived using the con-

cepts of statistical mechanics that have been discussed in this chapter. This requires
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FIGURE 15-7. Schematic representation of the helix-to-coil transition in polyglutamic acid

as a function of pH. Derived from data in P. Doty, J. Polym. Sci 23, 815 (1957).

the development of the partition function for a polymer of amino acids. The polypep-

tide is assumed to be a linear chain with each amino acid designated as being in a

helical or coil configuration, denoted h or c, respectively. Thus, we might have a chain

such as ccchhhhhcccchh. To construct the partition function, we arbitrarily assign a

statistical weight of 1 to a coil residue. This is equivalent to setting the energy to zero

for the system in the coil configuration. Next we assign a statistical weight of s to a

helical residue. Finally, recognizing that initiating a helix following a coil residue is

more difficult than adding a helix after another helix residue, we assign a statistical

weight of 𝜎s to a helical residue that initiates a helix. In other words, for an h fol-

lowing an h, the statistical weight is s, whereas for an h following a c, the statistical

weight is 𝜎s. Cooperativity is introduced into the system by stipulating that 𝜎 is much

less than 1. Using the rules outlined so far, the statistical weight of the configuration

ccchhhhhcccchh is 𝜎2s7.

The statistical weights can also be viewed in another way. If we consider the addi-

tion of a helical residue to an existing helical segment such as

… .ccchhhhhcc … → … .ccchhhhhhcc …

the equilibrium constant for this reaction is s. This is the propagation step in helix

formation. For the addition of a helical residue into a coil sequence such as

… ccccccc … . → … ccchcc..

the equilibrium constant is 𝜎s. This is the initiation step in helix formation. This

description of the statistical weights automatically creates a temperature dependence

for the statistical weights. For example, s = exp(−ΔGo∕RT), where ΔGo is the stan-

dard Gibbs energy for adding a helix residue after another helix residue. In practice,

𝜎 is assumed to be a constant, independent of temperature, but this is not necessary.
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The model developed thus far assumes that interactions occur only between adjacent

sites, that is, no long-range interactions exist between amino acid residues. This sim-

ple but elegant model for introducing cooperativity into a linear chain containing only

two elements is the essence of the Ising model developed by Ernst Ising in 1920 when

he was working with Wilhelm Lenz. They used this model to describe the alignment

of nuclear spins in ferromagnetism.

Unfortunately the helix-coil transition does not quite fit into the Ising model, as

we know that some long-range interactions exist. As described in Chapter 9, the helix

is stabilized by a hydrogen bond from a CO in residue i to an NH four residues away.

Thus, if we start at the amino end of a polypeptide, the first residue hydrogen bonds

to the fifth residue and so on down the polypeptide chain. However, when we get

to the end of the chain, we can see that the fourth amino acid from the end cannot

be in a helical conformation—it has nothing with which to hydrogen bond. Thus,

the four amino acids at the end must always be in a c conformation: … cccc. This

must be taken into account when determining all of the possible configurations of the

system. This problem can be easily addressed because the cccc structure persists in

all configurations of the polypeptide chain.

The second related issue is more subtle. To break a helical turn requires a minimum

of three hydrogen bonds to be broken so that we must have a minimum of three coil

residues to break a string of helical residues. This means that a configuration such

as … hhchh… is not allowed. To take this issue into account, a statistical weight

of zero is assigned to configurations in which one or two c’s are interposed between

two h’s. Assigning a statistical weight of zero is equivalent to assuming that these

configurations cannot exist. This is a rather extreme solution to this problem, as one

might envision one or two hydrogen bonds being broken to give rise to states other

than strictly h or c.

Using the rules that we have discussed, we can construct the partition function

from the sum of statistical weights for all possible configurations of the polypeptide

chain. The average number of helix residues, ⟨nh⟩, can be derived analogously to

the average energy, as described earlier (Eq. (15-22)). In this case, we sum over all

possible configurations of the polypeptide chain, and each term is the product of the

number of h’s and the statistical weight for that configuration, divided by the partition

function. Each nonzero statistical weight has the general formula sn
𝜎

m where n is the

number of helical residues and m is the number of helix initiation sites for that spe-

cific configuration. Therefore, the derivative of each statistical weight with respect to

s multiplied by s is the number of helical residues in that specific configuration mul-

tiplied by the statistical weight. If this operation is performed for all configurations,

and the resulting sum is divided by the partition function Q, the average number of

helical residues, ⟨nh⟩, is obtained. Thus, in mathematical notation, the average num-

ber of helical residues is ⟨nh⟩ = s(dQ∕ds)∕Q = (d ln Q∕d ln s). The fraction of the

polypeptide present as a helix, fh, is the average number of helix residues divided by

the total number of residues that can be in the helix configuration:

fh =
⟨nh⟩
n − 4
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of 𝜎, the factor by which the statistical weight is smaller for initiating a helix after a coil residue

than for propagating an existing helix. The abscissa is the equilibrium constant for propagating

a helix, which corresponds to adding a helix residue after another helix residue. This plot was

derived from the data in B. H. Zimm and J.K. Bragg, J. Chem. Phys, 31, 526 (1959).

Here n is the number of residues in the polypeptide chain, and the four in the denom-

inator arises because the last four residues are not counted as they can never be an

h residue. A plot of the fraction of helix versus s for large n and two values of 𝜎 is

shown in Figure 15-8.

The transition from coil to helix is attributed to a small change in s. In the case

of polyglutamic acid, this change comes about because of the ionization of carboxyl

groups, but this change can also be due to temperature changes because s is temper-

ature dependent. Moreover, the smaller the value of 𝜎, the sharper, more cooperative

the transition. This is to be expected: the more difficult the initiation, the more cooper-

ative the transition. Also, the more cooperative the transition, the more sigmoidal the

curve (Figure 15-8). This theory of helix-coil transitions is found to fit experimental

data well with 𝜎 equal to about 10−4 for large values of n. The sharp transition from

helix to coil as the temperature is raised is similar to the sharp transition from native

to denatured structure observed for proteins.

This statistical mechanical analysis of the helix-to-coil transition illustrates how

models for biological processes can be developed and understood through statistical

mechanics. The next chapter will deal with more applications of theory to the analysis

of biological problems.
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PROBLEMS

15-1. Consider a collection of noninteracting ideal gas molecules with molar mass

M at temperature T.

a. What is the ratio of the probability of finding a molecule moving with the

average speed to the probability of finding a molecule moving with two

times the average speed?

b. As the temperature increases, how does this ratio change?

c. As the molar mass increases, how does this ratio change?

15-2. Consider a system of N identical noninteracting molecules. The molecules can

exist in three energy states with energies 0, 𝜀1, and 𝜀2.

a. Derive expressions for the molecular partition function and the canonical

partition function.

b. Derive an expression for the fraction of molecules in each energy state.

What is the fraction of molecules in each energy state at very high temper-

atures, that is, as T approaches infinity? What is the fraction of molecules

in each energy state at very low temperatures, that is, as T approaches 0?

c. Derive an expression for the average energy of the system. What is the aver-

age energy at very high temperatures, that is, as T approaches infinity? What

is the average energy at very low temperatures, that is, as T approaches 0?

15-3. Consider the molecular partition functions for two diatomic molecules, HBr

and Br2.

a. Calculate the rotational and vibrational partition functions at 500 K for HBr,

given a rotational constant of B̃= 8.465 cm−1 and a vibrational frequency of

𝜈 = 2649 cm−1, where 𝜈 = 𝜈c and c is the speed of light.

b. Based on your calculations, how many vibrational states are accessible for

HBr at this temperature? Are more or fewer rotational states accessible?

c. Calculate the rotational and vibrational partition functions at 500 K for Br2,

given a rotational constant of B̃= 0.0821 cm−1 and a vibrational frequency

of �̃�= 325 cm−1.

d. Based on your calculations, are there more rotational states accessible for

HBr or Br2? What is the physical basis for this observation?
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e. Based on your calculations, are there more vibrational states accessible for

HBr or Br2? What is the physical basis for this observation?

15-4. Consider an ideal monatomic gas comprised of N= nNA molecules, where n
is the number of moles and NA is Avogadro’s number.

a. Using Eq. (15-41), calculate the entropy of this system. You can use

the expression for the canonical partition function, Q = qN∕N! given in

Eq. (15-38) for indistinguishable particles. You can also use Stirling’s

approximation, ln x! = x ln x − x , because the number of molecules in a

typical sample is large. In addition, you can use the translational partition

function given in Eq. (15-29) because the only motion for an atomic gas

is translational. Finally, you can use Eq. (15-13) to obtain an expression

for E=E(T)−E(0). The resulting expression is called the Sackur-Tetrode

equation.

b. Using the ideal gas law, PV= nRT, rewrite this expression in terms of pres-

sure instead of volume.

c. As the molar mass increases, does the molar entropy increase or decrease?

What is the physical basis for this trend?

15-5. Consider a peptide comprised of eight amino acids in the context of the

helix-coil transition. Note that the helix is most likely not very stable with

only eight amino acids, and we use this problem for instructive purposes only.

a. Using the rules discussed earlier for the statistical weights, calculate the

partition function Q, which is the sum of the statistical weights for all

configurations of this system.

b. Calculate the average number of helix residues, ⟨nh⟩.
c. Calculate the fraction of the polypeptide present as a helix, fh.





CHAPTER 16

Molecular Simulations

16.1 INTRODUCTION

Computer simulations serve as a bridge between theory and experiment. In

particular, simulations can provide the numerically exact results for a specific

model. The validity of the model can be tested by comparing the simulated results

to experimental data for the system that is being modeled. Moreover, theories can be

tested by comparing the simulated results to theoretical predictions for this model.

The combination of theories, models, and simulations assist in the interpretation

of experimental results and provide predictions that are experimentally testable.

Furthermore, computer simulations serve as a bridge between microscopic and

macroscopic properties. Specifically, simulations provide microscopic details on

the atomic level, while also providing macroscopic thermodynamic properties.

Finally, computer simulations can provide information that is not readily available

from experiments, such as measurements under extreme conditions of temperature

and pressure that are experimentally prohibitive, details of molecular motion and

structure that are difficult or impossible to study experimentally, and molecular

events that are too fast or slow to study experimentally. The importance of molecular

simulations was recognized by the 2013 Nobel Prize in Chemistry, which was

awarded to Martin Karplus, Michael Levitt, and Arieh Warshel for their pioneering

work on computer modeling of complex chemical systems.

The complete mathematical description of a system requires the solution of the

Schrödinger equation for all electrons and all nuclei, but these types of simulations

are not computationally practical for large biological systems or even most molecular

systems. Instead we rely on the Born–Oppenheimer approximation, which decouples

the motion of the electrons from the nuclei because the electrons move much faster

than the nuclei due to the difference in mass. As discussed in Chapter 8, according

to the Born–Oppenheimer approximation, the electrons are assumed to move in the

field of fixed nuclei, and the nuclei are assumed to move in the average field of the

electrons. In other words, the nuclei move on a potential energy surface obtained

by solving the electronic Schrödinger equation for each nuclear configuration. To

describe the nuclear motion, we need a complete description of the potential energy
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surface on which the nuclei move. Rather than generating this potential energy surface

by repeatedly solving the electronic Schrödinger equation, which is computationally

expensive, the potential energy surface is often represented by a molecular mechani-
cal force field, which can be viewed as an analytical functional form that approximates

the surface. The quantum mechanical description of the nuclear motion on the poten-

tial energy surface is called quantum dynamics, and the classical description of the

nuclear motion is called classical molecular dynamics. If the time evolution of the

nuclei is not of interest, but rather only average properties are desired, then the system

can also be described with the Monte Carlo approach.

In this chapter, we describe the tools that enable computer simulations of biolog-

ical systems and illustrate the type of information that can be obtained from such

simulations. First, we explain how molecular mechanical force fields are used to

describe the potential energy surfaces, and then we summarize the methods that have

been developed for large-scale simulations, such as periodic boundary conditions and

treatment of long-range electrostatics. After explaining how the system is modeled,

we discuss the classical molecular dynamics and Monte Carlo approaches. Subse-

quently, we review hybrid approaches that mix quantum mechanical and molecular

mechanical methods to allow the description of chemical bond breaking and forming,

as well as approaches for the calculation of Gibbs or Helmhotz energies in biolog-

ical systems. The power of these types of approaches is illustrated by a discussion

of computer simulations of the hydride transfer reaction catalyzed by the enzyme

dihydrofolate reductase (DHFR) in the final section of this chapter.

16.2 POTENTIAL ENERGY SURFACES

A molecular mechanical force field consists of analytical functional forms describing

the interactions in a system and parameters within these functional forms. The force

field is usually fit to structures and relative energies obtained from experimental data

or high-level electronic structure calculations for a set of molecules. In some cases,

the force field may also be fit to bulk properties. Thus, the essential quantum mechan-

ical effects, such as covalent bonding, are included empirically in the force field. In

all-atom force fields, each atom is assigned a spatial coordinate, and the potential

energy is defined to be a sum of interaction energies among the atoms. In some force

fields, often called coarse grained, groups of atoms are combined into a single site,

and the interaction energies are defined in terms of these sites rather than atoms to

save computational time. For simplicity, this discussion will focus on all-atom force

fields, although the basic concepts apply to these alternative descriptions as well.

Typically the total potential energy is expressed as

U = Ubonded + Uel + UvdW (16-1)

where Ubonded denotes bonding or intramolecular interactions, Uel denotes electro-

static or Coulombic interactions, and UvdW denotes the van der Waals interactions,

which are defined as the sum of the London attraction and van der Waals repulsion
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FIGURE 16-1. Stretching of the bond length r, bending of the bond angle 𝜃, and rotation

around bonds described by the torsional angle 𝜙.

interactions. The main bonding interactions are bond stretching, bond angle bending,

and rotation around bonds, as depicted in Figure 16-1. In some cases, additional terms

are included to describe out-of-plane deformations for planar systems or cross terms

to describe couplings between the various types of bonding interactions. Moreover,

sometimes additional terms are included to account explicitly for hydrogen-bonding

interactions. In the rest of this section, we discuss the interaction terms in Eq. (16-1)

and their significance for the simulation of biological molecules.

Bond stretching can be described as if the two atoms were connected by a spring.

The energy required to compress or stretch the spring is given by the harmonic oscil-

lator potential described in Chapter 7:

Ub = 1

2
kb(r − req)2 (16-2)

where req is the equilibrium bond length and kb is the force constant of the spring.

Typical values of the force constants are kb ≈600 kcal mol−1 Å−2 for single bonds

and kb ≈1180 kcal mol−1 Å−2 for double bonds. Based on these values, changing the

bond length by 0.1 Å requires approximately 3 kcal/mol of energy for a single bond

and approximately 6 kcal/mol of energy for a double bond. Thus, a significant amount

of energy is required to stretch or compress the bond away from its equilibrium bond

length. Moreover, the energy required for bond stretching or compression is greater

for double bonds than that for single bonds. In other words, double bonds are stiffer

than single bonds, as expected. The bond-stretching interaction terms for a single and

a double bond are depicted in Figure 16-2.
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and trigonal (dashed) CCC angle. Source: Courtesy of American Chemical Society, Biochem-

istry, Dec 2011.
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The bending of a bond angle is described by the same type of harmonic potential:

U
𝜃
= 1

2
k
𝜃
(𝜃 − 𝜃eq)2 (16-3)

where 𝜃eq is the equilibrium bond angle and k
𝜃

is the associated force constant. A

typical value for the force constant associated with angle bending in a tetrahedral

bond is k
𝜃
≈0.04 kcal mol−1 degree−2. Thus, changing the bond angle by 10∘ requires

approximately 2 kcal/mol of energy. The energy required for bond bending is slightly

greater for a trigonal bond than for a tetrahedral bond, as shown in Figure 16-2.

The rotation around bonds is described in terms of torsion angles, as defined in

Figure 16-1. These interaction energies are represented by periodic functions with

maxima and minima at certain orientations that depend on the nature of the bonds.

For example, the torsional interaction energy for rotation about a C−C single bond is

U
𝜙
=

V3

2
[1 + cos(3𝜙)] (16-4)

where V3 determines the barrier to rotation because U = V3 for 𝜙 = 0. As shown in

Figure 16-3, this interaction energy has three minima as the torsion angle varies from

0∘ to 360∘ for two tetrahedral carbons. For the specific case shown in Figure 16-3,

the minima correspond to the two gauche conformations with 𝜙 = 60∘ and 300∘ and

the single trans conformation with 𝜙 =180∘. For a C−C double bond, the torsional

interaction energy is

U
𝜙
=

V2

2
[1 + cos(2𝜙 − 180)] (16-5)

In this case, the interaction energy has two minima at 0∘ and 180∘ corresponding to the

planar molecule in the cis and trans conformation for the case shown in Figure 16-3.

Typically V2 > V3 because more energy is required to rotate around a double bond

than a single bond due to 𝜋 bonding within the double bond.
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FIGURE 16-4. Example of partial atomic charges for the amino acid phenylalanine. The

partial charges for each amino acid will sum to an integer charge that is consistent with the pro-

tonation state of the residue. The wavy lines represent the location of peptide bonds between

the previous and subsequent amino acid residues in the protein.

In addition to these bonding interactions, nonbonding interactions between pairs

of atoms also play an important role in force fields. Typically atoms that are involved

in bonding interactions with each other are excluded from these nonbonding inter-

actions because the local electronic structure is represented by the bonding terms.

Nonbonding interactions include both electrostatic and van der Waals interactions,

which are discussed in more detail in the remainder of this section.

The electrostatic interactions are described in terms of partial charges assigned to

each atom. The partial charges can be obtained from quantum chemistry calculations

on molecular systems. As discussed in Chapter 8, quantum chemistry calculations

provide information about the electron density, which varies over the molecular sys-

tem. Analysis tools have been developed to assign partial charges to each atom in

a way that reproduces the quantum mechanical electrostatic potential while main-

taining the correct overall charge of the molecule. An example of the partial atomic

charges for the amino acid phenylalanine is given in Figure 16-4. These partial atomic

charges can also be used to calculate the dipole moment of the molecule, which pro-

vides an indication of its polarity. Interaction terms that explicitly involve dipole

moments and higher-order moments are typically not included in force fields, but

rather these effects are incorporated via the interaction energies between atomic point

charges.

The electrostatic interaction energy for two charges q1 and q2 separated by a dis-

tance r is given by

Uel(r) = 332
q1q2

r
kcal∕mol (16-6)

The constant of 332 converts the energy to kcal/mol when the charges are given in

units of electronic charge and the distance is given in units of Angstroms. This interac-

tion energy is attractive for pairs of atoms with charges of opposite sign and repulsive

for pairs of atoms with charges of the same sign, as shown in Figure 16-5. The total

electrostatic interaction energy is obtained by summing over all pairs of atoms in the

system except for those excluded because of bonding interactions.
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FIGURE 16-5. Electrostatic interaction energy for two charges with the same sign (repulsive

interaction) and for two charges with the opposite sign (attractive interaction).

When the two charges are separated by a medium, such as solvent, with dielec-

tric constant D, the electrostatic interaction in Eq. (16-6) is divided by this dielectric

constant. The dielectric constant is unity in vacuum, approximately 80 for water, and

approximately 2 for nonpolar liquid hydrocarbons. In all-atom force fields, typically

the dielectric constant is assumed to be unity because the effects of the medium are

included explicitly through interatomic interactions. In some cases, molecular simu-

lations do not include explicit water molecules but instead treat the aqueous solvent

as a dielectric continuum with the dielectric constant of water. Such treatments are

computationally faster but are unable to describe certain phenomena, such as specific

hydrogen-bonding interactions between solvent molecules and the biomolecule.

A number of issues arise in the description of electrostatic interactions. As dis-

cussed in the next section, electrostatic interactions are long range and therefore must

be treated with care for large systems, particularly for periodic systems. Moreover,

the treatment of the electrostatic interaction energies described earlier neglects polar-

ization effects because the partial atomic charges are fixed during the simulation. A

number of polarizable force fields have been developed to include polarization effects

by allowing the partial atomic charges to fluctuate or by adding an additional charge

site that is allowed to move in response to the local electric field. These polarizable

force fields have been shown to be more accurate in some cases but are also more

computationally expensive.

In addition to electrostatic interactions, most force fields also include the London

attraction and van der Waals repulsion interaction energies. The London attraction

energy is a quantum mechanical phenomenon that arises from fluctuations in the elec-

tronic distribution. These fluctuations lead to an instantaneous dipole in one atom

that induces an oppositely directed dipole in a neighboring atom. This fluctuation

dipole-induced dipole interaction is always attractive and becomes more negative as

the distance between the two atoms decreases. The form of this interaction is often

given as

Uatt(r) = −
Bij

r6
ij

(16-7)
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FIGURE 16-6. The dashed lines depict the London attraction interaction energy (Eq. (16-7))

and van der Waals repulsive interaction energy (Eq. (16-8)). The solid line depicts the

London–van der Waals interaction energy UvdW(r) (Eq. (16-9) or Eq. (16-10)). Using the form

given in Eq. (16-10), the well depth is 𝜀ij, and the position of the minimum is at an interatomic

separation of (2)1∕6
𝜎ij.

Here Bij is a positive constant that depends on the polarizability, which is a measure

of the ease of delocalization of the electrons, of the groups involved. Figure 16-6

depicts this attractive interaction with a dashed line.

The van der Waals repulsion energy reflects the steric repulsions between all atoms

or molecules at short distances. The origin of this interaction is also quantum mechan-

ical in that two electrons cannot occupy a single electronic orbital, as discussed in

Chapter 8. Several different simple models have been used to describe the van der

Waals repulsion. In the hard-sphere model, the interaction between two atoms is zero

until they come into contact, at which point the interaction energy goes to infinity.

This model can be understood by envisioning two billiard balls that do not sense

each other until they collide, at which point they experience a hard collision and are

deflected in different directions. A more realistic model is given as

Urep(r) =
Aij

r12
ij

(16-8)

where Aij is a positive constant that depends on the effective sizes of both atoms.

Figure 16-6 depicts this repulsive interaction with a dashed line.

The van der Waals interaction energy is defined to be the sum of the London attrac-

tion and van der Waals repulsion interaction energies. Using Eqs. (16-7) and (16-8),

the van der Waals interaction energy for two atoms i and j separated by distance rij is

given by

UvdW(rij) =
Aij

r12
ij

−
Bij

r6
ij

(16-9)

This interaction energy is also called the Lennard-Jones 12–6 potential because of

the powers of the distance in the denominators of the two terms. Often it is written in
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a slightly different form as

UvdW(rij) = 4𝜀ij

[(
𝜎ij

rij

)12

−
(
𝜎ij

rij

)6
]

(16-10)

The solid line in Figure 16-6 depicts this 12–6 interaction potential, which is the

sum of the attractive London interaction and the repulsive van der Waals interaction.

At short distances, the repulsive term dominates because it is described by a higher

power of 1/r, resulting in a strongly repulsive region of positive potential at small

distances. At larger distances, the attractive interaction dominates, resulting in an

attractive region with negative interaction energy as the potential approaches zero. At

intermediate distances, the attractive and repulsive interactions counteract each other,

and the minimum of the curve corresponds to a net zero force due to this balance.

For the van der Waals interaction given by Eq. (16-10) and depicted in Figure 16-6,

the well depth is 𝜀ij, and the position of the minimum is at an interatomic separation

of (2)1∕6
𝜎ij. In practice, each atom i is assigned van der Waals parameters 𝜀

𝜄
and 𝜎

𝜄
,

and the pairwise interactions are calculated using prescribed combining rules. For

example, the values used to calculate the interaction energy for atoms i and j are

combined as (𝜎i + 𝜎j)∕2 and
√
𝜀i𝜀j in some force fields. For atoms such as carbon,

oxygen, and nitrogen, typically the values of 𝜎 are ∼3.0 −3.5 Å, and the values of 𝜀

are ∼0.1 – 0.2 kcal/mol.

In simulations of biological systems based on molecular mechanical force fields,

the user must input the topology of the biomolecule to indicate the atom types and the

bonding pattern that identifies which atoms are bonded to each other. Depending on

the topology, the bonding interactions comprised of bond stretching, angle bending,

and torsional angle rotation are defined for the system. Typically the topology is fixed,

so bonds are not allowed to break and form. Each atom is also assigned a partial charge

to describe the electrostatic interactions, as well as van der Waals parameters. All of

this information is used to generate the complete potential energy surface, which

depends on the nuclear coordinates, as given in Eq. (16-1).

16.3 MOLECULAR MECHANICS AND DOCKING

Molecular mechanical force fields can be used to identify the lowest energy

conformations of biological systems through an approach that is often called

molecular mechanics. These types of calculations can be used to perform structural

analyses, to model the energetics of small conformational changes, and to examine

how two molecules will interact with or bind to each other. Several of the issues

discussed in Chapter 8 for calculating minima on the potential energy surfaces

generated with quantum chemistry methods are also relevant here. The main

difference is that here we are using molecular mechanical force fields instead of

quantum chemistry methods to calculate the potential energy surface.

It is important to recall that the absolute energies are not meaningful, so the poten-

tial energies of different molecules cannot be compared directly. However, the relative
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energies of different conformations of chemically identical systems can be compared.

Minimization schemes can be used to locate minima on the potential energy surface.

As discussed in Chapter 8, a minimum on the potential energy surface is defined to

have zero forces and positive second derivatives along all coordinates. Due to the

high dimensionality of biological systems, there are many local minima in which the

system can become trapped, and it is difficult to determine if a particular minimum

is the global minimum. Thus, often molecular dynamics or Monte Carlo simulations

are performed to explore the potential energy surface more broadly.

Molecular mechanics can also be used to investigate how a protein or nucleic acid

will bind a drug molecule or ligand. This procedure is often called docking. In this

case, the focus is on the interaction energy between the two molecules. This interac-

tion energy is calculated by subtracting the energies of the individual molecules from

the energy of the total system in which the two molecules are interacting. Usually,

the geometries of the individual molecules and the total system are optimized to min-

imize the energy. In some cases, the molecules are kept rigid, although flexibility of

both the protein and the ligand can play a significant role in ligand binding. Typically,

these approaches minimize the energy, rather than the Gibbs or Helmholtz energy, so

entropic effects are not included, although methods have been developed to include

entropic effects as well.

16.4 LARGE-SCALE SIMULATIONS

In biological simulations, the goal is to simulate a macroscopic system while

including a relatively small number of atoms for computational tractability. A

simple example is simulating a box filled with explicit water molecules. A slightly

more complicated example is simulating a protein surrounded by hundreds or even

thousands of explicit water molecules in a box. In these types of simulations, care

must be taken in the treatment of the boundaries because a large fraction of atoms lie

on the surface and thus experience different interaction energies than do the atoms in

the bulk. Several methods have been developed to address this issue. One approach

is to impose a spherical boundary while treating the outer shell of the sphere in a

way that mimics the effects of bulk solvent. A variety of such methods have been

developed and applied to biological systems.

Another popular approach for treating the boundaries in large simulations is uti-

lizing periodic boundary conditions. In this approach, the system is placed in a cubic

box that is replicated to form an infinite three-dimensional lattice. A two-dimensional

representation of this lattice is depicted in Figure 16-7. As an atom moves in the cen-

tral box, all of its images in the replicated boxes move in exactly the same way. If

a molecule leaves the central box, an image enters through the opposite face. This

approach is based on the assumption that the properties of a relatively small, infinitely

periodic system are the same as those of a macroscopic system. In practice, the valid-

ity of this assumption should be tested by performing simulations with different box

sizes. The central box can also be rectangular, octahedral, or another shape that is

suitable for the biomolecule of interest.
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FIGURE 16-7. Schematic depiction of periodic boundary conditions in two dimensions. As

a particle leaves the central box, another particle replaces it from the other side.

The calculation of the nonbonding interaction terms is computationally expensive

for large systems due to the large number of pairwise interactions. For a system with

N atoms, there are N(N−1)/2 unique pairs of atoms. To save computational time, often

a spherical cutoff is applied to some of the nonbonding terms, where the interaction

is set to zero at a cutoff radius rc:

U(r) = 0 for r > rc (16-11)

The van der Waals interactions given in Eq. (16-10) are short range in that they

approach zero relatively quickly at small distances. Thus, these interactions can usu-

ally be truncated at a cutoff radius of ∼10–12 Å. However, a sudden cutoff of non-

bonded interactions can lead to discontinuities in the potential energy and the forces,

leading to numerical instabilities in the molecular dynamics simulations described in

the next section. To avoid these discontinuities, the potential energy is often modified

slightly by the addition of terms that make the potential energy and forces zero at the

cutoff radius.

Electrostatic interactions are long range in that they approach zero much more

slowly and at larger distances than the short-range van der Waals interactions. As

a result, using cutoffs for electrostatic interactions can lead to significant errors in

simulations of large systems. A mathematically rigorous approach for summing over

the interactions between ions and their periodic images is the Ewald summation
method, named after Paul Peter Ewald, a German physicist and crystallographer.
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In this method, the summation of long-range interactions is converted into two

summations that can be treated as short-range interactions with cutoffs. An alterna-

tive approach is the reaction field method, in which the charges inside a spherical

cavity are treated explicitly, while the charges outside this cavity are represented as

a dielectric continuum to mimic their effects in an average way.

In Chapter 15, we discussed several different types of ensembles, where an ensem-

ble was defined to be an imaginary collection of virtual copies of a real system with

certain macroscopic properties specified. A molecular simulation is usually chosen to

represent one of these types of ensembles. In a microcanonical ensemble, the number

of particles, volume, and energy are held constant (constant NVE). For a box of fixed

volume with a fixed number of atoms, this ensemble is generated by solving Newton’s

equations of motion, which conserve energy. In a canonical ensemble, the number of

particles, volume, and temperature are held constant (constant NVT). For a box of

fixed volume with a fixed number of atoms, this ensemble is generated by connecting

the system to a heat bath that maintains a constant temperature. The energy of the sys-

tem in a canonical ensemble can vary because of heat exchange between the system

and the bath, but for large N usually the energy does not fluctuate significantly. Sim-

ilarly, the temperature of the system in a microcanonical ensemble can vary, but for

large N usually the temperature does not fluctuate widely. Another ensemble that is

useful for molecular simulations is the isothermal–isobaric ensemble, where the num-

ber of particles, pressure, and temperature are fixed (constant NPT). In this ensemble,

the volume of the box can change to maintain a constant pressure. This ensemble is

often used to obtain the correct density of the system for a specified pressure. For

large systems, the structural and thermodynamic properties tend to be similar for

these commonly used ensembles.

In molecular simulations, a macroscopic property can be calculated by averaging

this property over all members of the ensemble. According to the ergodic hypothesis,

averaging a given property over all members of the ensemble is equivalent to aver-

aging this property over time. In other words, the average over conformational space

is equivalent to the average over a time-dependent trajectory. Such a time-dependent

trajectory can be generated with molecular dynamics, which will be discussed in the

next section. Another way to calculate properties averaged over an ensemble is Monte

Carlo, which will be discussed in a later section. In addition to providing macro-

scopic, thermodynamically averaged properties, molecular dynamics also provides

information about the time evolution and the fluctuations of the system at the atomic

level.

16.5 MOLECULAR DYNAMICS

In classical molecular dynamics simulations, Newton’s equations of motion are inte-

grated for all atoms in the system. Molecular dynamics can be used to generate

statistical ensembles, which in turn are used to calculate energetic, thermodynamic,

structural, and dynamical properties. It can also be used to study the time evolution

of chemical and biological processes. In this section, we explain the basic princi-

ples underlying molecular dynamics and discuss some of the issues that arise in
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molecular dynamics simulations, such as choosing an appropriate time step, apply-

ing constraints to certain bonds, and defining and controlling the temperature of the

system.

Newton’s equations of motion can be written as

Fi = miai = mi
d2ri

dt2
(16-12)

This equation states that a force Fi on a particle of mass mi causes an acceleration ai,

which is defined to be the second derivative of the position coordinate with respect to

time. Here the force, acceleration, and position are vectors in three-dimensional space

with x, y, and z components. Moreover, the force is the negative of the derivative of

the total potential energy U of the system:

Fix = − 𝜕U
𝜕rix

(16-13)

where rix is the x-component of the position coordinate for particle i, and Fix is the

x-component of the force on particle i. Analogous equations can be written for the

y and z components. Numerical methods are required to solve Newton’s equations

of motion for more than two independent particles. In these numerical methods, the

positions and velocities at a given time t are used to obtain the positions and velocities

at a later time t + Δt, where Δt is a small enough time step to allow the accurate

solution of these equations of motion. The optimal numerical method satisfies two

important properties. First, it conserves energy, where the sum of kinetic and potential

energies is constant. Second, it is time reversible, where reversing the signs of all

velocities results in the atoms retracing the trajectory back to their original positions

and velocities. No algorithm conserves energy perfectly or is exactly time reversible

over long times, but the goal is to design an algorithm that maintains these properties

as well as possible.

Several algorithms have been developed to integrate Newton’s equations of motion

in molecular dynamics simulations. Here we will present the velocity Verlet algo-
rithm, keeping in mind that many alternative algorithms are also available. This algo-

rithm is an extension of the original Verlet algorithm named after Loup Verlet, a

French physicist who pioneered molecular dynamics simulations. In this algorithm,

we start with the positions r(t) and velocities v(t) and calculate a(t) from Eq. (16-12)

using the force obtained from the potential energy surface via Eq. (16-13). Then the

positions and velocities at time t + Δt are calculated using the following equations:

r(t + Δt) = r(t) + Δtv(t) + 1

2
[Δt]2a(t) (16-14)

v(t + Δt) = v(t) + 1

2
Δt[a(t) + a(t + Δt)] (16-15)

Note that the acceleration at time t + Δt as well as at time t is required to propagate

the velocity in this algorithm. This process of numerically propagating the positions
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and velocities is repeated many times to generate a molecular dynamics trajectory.

The velocity Verlet algorithm is numerically stable, simple to program, and time

reversible. It also conserves energy well even with relatively long time steps.

An approach such as the velocity Verlet algorithm can be used to propagate the

positions and velocities of all atoms in a large biological system. It is important to

choose a suitable time step for this numerical integration. Using a large time step will

decrease the computational time, but if the time step is too large, the numerical inte-

gration will become unstable and inaccurate. In practice, the stability of the numerical

integration can be tested by analyzing energy conservation and time reversibility.

Many algorithms, including the velocity Verlet algorithm, assume that the accelera-

tions and velocities are constant over a given time step. Thus, the time step is limited

by the highest frequency motion that must be simulated. In large-scale simulations,

often the bonds involving hydrogen, such as the C−H bonds, are associated with the

highest frequency motions and therefore are constrained, that is, fixed to their equi-

librium bond lengths. Freezing these high-frequency motions with constraints allows

a larger time step to be used and therefore speeds up the computation. A typical time

step for all-atom classical molecular dynamics simulations is ∼1−2 fs.

Currently, molecular dynamics trajectories are often propagated for tens or hun-

dreds of nanoseconds. More efficient algorithms and faster computers have enabled

researchers to propagate molecular dynamics trajectories on the microsecond and

even longer time scales. Coarse graining approaches, where the system is described in

terms of sites comprised of many atoms, have allowed even longer molecular dynam-

ics trajectories. However, these types of coarse graining approaches do not retain the

atomic-level information that all-atom force fields provide.

The temperature for a molecular dynamics simulation is proportional to the kinetic

energy of the system, which can be expressed in terms of the atomic velocities. This

relation can be understood in the context of the Maxwell–Boltzmann distribution

of velocities discussed in Chapter 15. In Eq. (15-3), we expressed the mean-square

speed, ⟨v2⟩, in terms of the temperature. Rewriting this expression in terms of the

mass m of a single particle or atom,

⟨v2⟩ = 3kBT

m
(16-16)

The kinetic energy of a system comprised of N particles with masses mi and speeds

vi is

K = 1

2

N∑
i=1

miv
2
i (16-17)

where the summation is over all particles. Combining equations (16-16) and (16-17),

the average kinetic energy is

⟨K⟩ = 3NkBT∕2 (16-18)

Thus, the thermodynamic temperature is proportional to the average kinetic energy

of the system. Moreover, at any time t of a molecular dynamics trajectory, the



370 MOLECULAR SIMULATIONS

instantaneous temperature Tinst is defined in terms of the instantaneous kinetic

energy Kinst as

Tinst =
1

3NkB

N∑
i=1

miv
2
i = 2

3NkB

Kinst (16-19)

The thermodynamic temperature is the average of the instantaneous temperature over

many molecular dynamics time steps.

Temperature is treated differently for the various ensembles simulated. For

a microcanonical (constant NVE) ensemble, the temperature fluctuates about its

average value. For a canonical ensemble (constant NVT), various methods have been

developed to maintain a constant temperature. In some of these methods, a heat

bath is introduced with one or several extra degrees of freedom so that averages in

the microcanonical ensemble for the extended system are equivalent to averages in

the canonical ensemble for the real system. For an isothermal–isobaric ensemble

(constant NPT), methods have been developed to maintain constant temperature and

pressure simultaneously.

For the simulation of biological systems such as proteins and nucleic acids,

typically the initial coordinates are obtained from an experimentally derived

structure, often from X-ray crystallography or NMR. The initial velocities are

usually chosen in a manner that satisfies the Maxwell–Boltzmann distribution of

velocities for the specified temperature (related to Eq. (15-5)). For simulations of

equilibrium properties, it is important to follow a careful equilibration procedure

for the system prior to data collection. The purpose of the equilibration procedure

is to relax bad contacts that may have been present in the initial structure and

to allow the system to gradually settle to the desired temperature. During this

equilibration procedure, the temperature can be controlled by scaling the velocities

to satisfy the Maxwell–Boltzmann distribution for the desired temperature or with

more sophisticated techniques. After equilibration, the physical properties of the

system should fluctuate around their average values, which should remain constant

over time.

Several useful quantities can be calculated from molecular dynamics simulations.

The root-mean-square deviation (RMSD) quantifies the differences between the

atomic coordinates for two configurations of the same protein. Often the RMSD

is calculated between the configuration at a given time step and a reference

configuration, such as an X-ray crystal structure. The RMSD is defined as

RMSD =

√√√√ 1

N

N∑
i=1

|ri(t) − ro
i |2 (16-20)

where N is the number of atoms in the system, ri(t) is the position coordinate of atom i
at time t, and ro

i is the position coordinate of atom i in the reference configuration. For

a molecular dynamics trajectory, typically the RMSD is calculated for each time step

and is averaged over all atoms of interest. Often only the heavy atoms are included

in the summation; in other words, the hydrogen atoms are omitted. The RMSD for a
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FIGURE 16-8. The RMSD, given in Eq. (16-20), for all heavy atoms in DHFR for each time

step in a molecular dynamics trajectory with respect to the initial coordinates, which were

obtained from an X-ray crystal structure. The RMSD changes quickly in the initial stage of

the trajectory, but after a relatively short equilibration period, the RMSD fluctuates regularly

about a value of 1.7 Å.

simulation of the enzyme DHFR is depicted in Figure 16-8. Here the RMSD is cal-

culated relative to the initial coordinates, which were obtained from an X-ray crystal

structure. At the beginning of the trajectory, the RMSD increases dramatically, but

after a short equilibration period, the RMSD fluctuates regularly about its average

value of 1.7 Å, indicating that the equilibrated structure is stable and does not deviate

significantly from the X-ray crystal structure.

Another quantity that is often calculated is the root-mean-square fluctuation

(RMSF), which quantifies the fluctuations of each atom in the protein about its

average position during a molecular dynamics trajectory. Thus, the RMSF identifies

the more flexible regions of a protein. The RMSF is defined as

RMSF =

√√√√ 1

T

T∑
t=1

|ri(t) − ri|2 (16-21)

where T is the number of time steps, ri(t) is the position coordinate of atom i at time

step t, and ri is the average position coordinate of atom i over the trajectory. (For

notational simplicity, here t is the time step rather than the actual time.) In contrast to

the RMSD, the RMSF is calculated for each atom and is averaged over all time steps.

The RMSF for a simulation of DHFR is depicted in Figure 16-9. Here the RMSF

is calculated only for the C
𝛼

atoms of the protein backbone. The peaks in this plot

indicate the more flexible regions of DHFR. For this protein, the residues with larger

RMSFs are located in either disordered loop regions or tail regions at the ends of the

peptide chain.
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FIGURE 16-10. Geometric description of the hydrogen bond between the hydroxyl group

of Thr46 and a nonbridging phosphate oxygen in the NADPH cofactor during a molecular

dynamics simulation of DHFR. According to standard criteria used to define hydrogen bonds,

the hydrogen bond is formed for 95% of the configurations sampled in this trajectory.

In addition to the RMSD and RMSF, structural properties of the protein can also

be analyzed with molecular dynamics. For example, Figure 16-10 depicts an analysis

of the hydrogen bond between the hydroxyl group of Thr46 and a nonbridging phos-

phate oxygen in the NADPH cofactor. The hydrogen bond donor–acceptor distance

and the donor–hydrogen–acceptor angle are plotted as a function of time. The figure

shows that the distance and angle fluctuate regularly about their average values. Typ-

ically a hydrogen bond is defined by criteria such as the donor–acceptor distance is

no more than 3.0–3.5 Å and the donor–hydrogen–acceptor angle does not deviate
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from linearity by more than ∼30∘. Using such criteria, the hydrogen bond is formed

for 95% of the configurations sampled in this trajectory. These types of analyses pro-

vide a measure of the stability, pervasiveness, and fluctuations of specific hydrogen

bonds. Other types of interactions and structural properties can be examined in an

analogous way.

16.6 MONTE CARLO

The Monte Carlo method was named after the famous gambling city in Europe

because of the extensive use of random numbers in the algorithm. The objective

of this method is to generate a set of states in phase space that are sampled from

a specified statistical ensemble. In contrast to molecular dynamics, the states are

not connected to each other in a physically meaningful way, and time-dependent

information is not provided. Nevertheless, the Monte Carlo method is useful for the

efficient calculation of average properties for a given ensemble.

The Metropolis Monte Carlo method, named after Nicholas Metropolis, a Greek

American physicist, provides an algorithm for calculating average properties within a

canonical ensemble (constant NVT). Starting with an initial configuration, one of the

atoms is perturbed by a random displacement in three-dimensional space. The poten-

tial energy is calculated for the initial state m and for the perturbed state n, and the

corresponding potential energies Um and Un are compared to determine whether to

accept or reject this move. If the move is downhill in energy, Un − Um ≤ 0, the move

is accepted. If the move is uphill in energy, Un − Um > 0, the move is accepted with

probability exp[−(Un − Um)∕(kBT)] using an algorithm that depends on a selected

random number. If the uphill move is rejected, then the configuration associated with

the initial state m becomes the new state in the chain. This procedure is repeated to

generate a chain of states that are sampled from a canonical ensemble. The prop-

erties of the system can be averaged over this chain of states in the same way that

they are averaged over molecular dynamics trajectories, although no time-dependent

information is provided by the Monte Carlo method. The Monte Carlo method has

also been extended to calculate average properties in other ensembles, such as the

isobaric-isothermal ensemble (constant NPT).

16.7 HYBRID QUANTUM/CLASSICAL METHODS

The standard molecular mechanical force fields described in Section 16.2 do

not allow chemical bonds to break or form. A variety of approaches have been

developed to address this limitation. One approach is the development of reactive

force fields. In this approach, a molecular mechanical force field is augmented

with analytical functional terms that allow the breaking and forming of chemical

bonds, and the parameters in these terms are fit to quantum chemistry calculations

for a specific type of reactive system. A disadvantage of this approach is that the

fitting procedure is often cumbersome and must be repeated for each different type
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of system. Another approach for simulating chemical reactions is called direct
dynamics or ab initio dynamics. In this approach, the entire system is treated

quantum mechanically, and the potential energy surface is generated “on the fly”

by performing an electronic structure calculation at each molecular dynamics time

step. The main drawback of this approach is the computational expense, which

severely limits the size of the system and the duration of the molecular dynamics

trajectory.

Mixed quantum mechanical/molecular mechanical (QM/MM) methods provide

an attractive alternative to these approaches. In QM/MM methods, the system is

divided into reactive and nonreactive regions. The reactive region is treated quan-

tum mechanically, while the nonreactive region is treated with a standard molecular

mechanical force field. The QM region can be described using a variety of electronic

structure methods, including semiempirical methods, Hartree–Fock theory, and den-

sity functional theory, which were discussed in Chapter 8. Various strategies have

been devised to treat the boundary between the QM and MM regions. For example,

the bonds that are broken at this boundary may be capped with hydrogen atoms. More-

over, numerous schemes have been developed to describe the interactions between

the QM and MM regions. In general, these QM-MM interactions include both elec-

trostatic and van der Waals interactions. More specifically, the electronic structure

calculation for the QM region includes electrostatic interactions with the atomic point

charges in the MM region.

Another approach that is often categorized as a QM/MM method is the empirical

valence bond (EVB) method. The EVB method describes a chemical reaction in

terms of a small number of resonance structures, also called valence bond states.

For example, a hydrogen transfer reaction may be described in terms of the two states

AH --- B and A --- HB, where the hydrogen is covalently bonded to A in the first state

and to B in the second state. These valence bond states are then used as basis functions

for solving the electronic Schrödinger equation, as described in Chapter 8. To avoid

explicitly solving the Schrödinger equation, the energies of these two states and the

coupling between them are usually represented as molecular mechanical force field

terms fit to electronic structure calculations or experimental data. Then the poten-

tial energy surface for the chemical reaction is expressed as a linear combination of

these force field terms. Thus, the EVB method is often nearly as computationally effi-

cient as standard molecular mechanical force fields but still allows chemical bonds

to break and form. The disadvantage of this approach is the required parameteri-

zation procedure, although methods have been developed to automate or avoid this

procedure by connecting the valence bond approach directly to electronic structure

methods.

In addition to electronic quantum mechanical effects, which are required to

describe bond breaking and forming, the nuclei can also exhibit quantum mechanical

effects. Nuclear quantum effects that can be important in biological systems include

zero-point energy and tunneling, as discussed in Chapter 7. In particular, hydrogen

tunneling has been shown to play an important role in a variety of proton and hydride

transfer reactions catalyzed by enzymes. Various methods have been developed to
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include nuclear quantum effects in molecular simulations, but a discussion of these

methods is beyond the scope of this book.

16.8 HELMHOLTZ AND GIBBS ENERGY CALCULATIONS

Molecular dynamics simulations can also be used to calculate relative Helmholtz and

Gibbs energies. Helmholtz energies are obtained from the canonical ensemble (con-

stant NVT), while Gibbs energies are obtained from the isothermal–isobaric ensemble

(constant NPT). Most biological simulations are performed in the solution phase,

where these two thermodynamic quantities are very similar and often are not even

distinguished. In the literature, these quantities are usually referred to as free ener-
gies, and this term will be used in this section to denote either Helmholtz or Gibbs

energies.

Using the statistical mechanical concepts discussed in Chapter 15, the relative

free energies between two states, denoted A and B, can be calculated from the par-

tition functions for the two states. When these two states are significantly different,

technical difficulties arise because large energy differences between the two states

lead to small values of the exponential in the partition function, thereby causing

statistical uncertainty and numerical errors. To address this challenge, a variety of

simulation methods have been developed to calculate relative free energies. These

methods involve constructing a path connecting states A and B in conformational

space and breaking this path up into windows, where each window is small enough to

allow the accurate calculation of the free energy change across that window. Because

the free energy is a state function, the free energy difference between the end points

does not depend on the particular path chosen, and often this path has no physical

meaning. Various methods have been developed to bias the potential energy surface to

ensure adequate sampling within each window. The data from all of the windows are

combined using statistical methods that provide the free energy difference between

the end points. These types of approaches can be used to obtain information about

the free energy differences associated with a conformational change, ligand binding,

and other biological transformations.

In addition, related methods have been developed for calculating the free energy

barriers for chemical reactions in biological systems. Many of these methods are

based on umbrella sampling, in which an additional term is added to the potential

energy surface to bias the system toward a particular region of conformational space.

In practice, a series of independent molecular dynamics trajectories is propagated

with different biasing potentials that cause the system to evolve along a proposed

reaction coordinate. Subsequently, all of the data are combined using statistical meth-

ods that remove the effects of the biasing potentials to obtain the free energy along

this reaction coordinate for the original potential energy surface. The choice of reac-

tion coordinate can significantly influence the calculated free energy barrier. For this

reason, methods have been developed to generate a multidimensional free energy

surface along several reaction coordinates that are chosen to represent the key inter-

atomic distances or angles. Moreover, in certain cases, a collective reaction coordinate
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FIGURE 16-11. The proton and hydride transfer reactions catalyzed by the enzyme DHFR.

BH is a proton donor, e.g., the enzyme or H2O.

that depends on a large number of nuclear coordinates is more suitable than a single

geometrical reaction coordinate. An example of a free energy calculation along this

type of collective reaction coordinate will be given in the next section for the hydride

transfer reaction catalyzed by the enzyme DHFR.

16.9 SIMULATIONS OF ENZYME REACTIONS

As discussed earlier in this book (Chapters 10 and 12), the enzyme dihydrofo-

late reductase (DHFR) catalyzes the conversion of 7,8-dihydrofolate (DHF) to

5,6,7,8-tetrahydrofolate (THF), using nicotinamide adenine dinucleotide phosphate

(NADPH) as a coenzyme. This mechanism is thought to proceed through the initial

protonation of DHF, followed by hydride transfer from the NADPH cofactor to

the protonated DHF substrate. The hydride transfer reaction catalyzed by DHFR is

depicted in Figure 16-11. This reaction has been studied extensively with an array of

experimental methods, including X-ray crystallography, NMR, and single molecule

spectroscopy.

This enzymatic reaction has also been studied with a wide range of theoretical

approaches. The potential energy surface has been represented by several different

QM/MM and EVB methods that have provided predominantly consistent results.

The approaches described in the previous section have been used to calculate the

free energy barrier for the hydride transfer reaction and to investigate the confor-

mational changes that occur along the reaction pathway. In particular, the distances

between key residues have been monitored during this reaction. Moreover, the impact

of mutating specific amino acids on the free energy barrier and on the conformational

changes along the reaction pathway has also been studied with these approaches. The

corresponding changes in rate constants calculated within the framework of transition

state theory are in agreement with experimental results. In addition, several different

approaches for including the nuclear quantum effects of the transferring hydrogen

have been applied to this enzyme, and the calculated kinetic isotope effects associ-

ated with replacing the transferring hydrogen with deuterium are in agreement with

experimental values. This agreement between theoretical calculations and experimen-

tal data provides validation for the computational methods.

A combination of theoretical and experimental data has provided insights into

the role of protein motion and conformational sampling in enzyme catalysis. The
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FIGURE 16-12. Free energy profile of the DHFR-catalyzed hydride transfer reaction as a

function of a collective reaction coordinate defined in terms of the energy difference between

the reactant and product valence bond states. This reaction coordinate includes motions of

the enzyme, substrate, and cofactor. The magnitude of the free energy barrier is determined

by the relative probabilities of sampling configurations at the top of the free energy barrier

and in the reactant minimum. The average donor–acceptor distances in Angstroms are pro-

vided next to the free energy curve for selected values of the reaction coordinate. Note that the

donor–acceptor distance decreases as the reaction evolves from the reactant to the top of the

barrier. The conformational changes along the collective reaction coordinate are attained by

equilibrium, stochastic, thermal motions occurring within the confines of the protein structure.

These conformational changes facilitate the hydride transfer reaction by bringing the donor

and acceptor closer together, orienting the substrate and cofactor properly, and providing a

favorable electrostatic environment. Reproduced in part with permission from G. G. Hammes,

S. J. Benkovic, and S. Hammes-Schiffer, Biochemistry 50, 10422 (2011). © 2011 by American

Chemical Society.

concepts are summarized in Figure 16-12 and Figure 16-13. According to this

perspective, stochastic thermal motions throughout the enzyme and ligands lead to

conformational sampling of configurations that facilitate hydride transfer by bringing

the substrate and cofactor closer together, orienting them properly, and providing a

favorable electrostatic environment. These thermal motions are Brownian in nature

but occur within the confines of the protein structure. Typically these thermal motions

occur on the pico- to nanosecond time scale but lead to overall conformational

changes that occur on a slower timescale along the collective reaction coordinate.

Within this framework, the experimentally measured millisecond timescale for

hydride transfer in DHFR is related to the average time required to sample con-

figurations that are conducive to the chemical reaction. The actual chemical bond
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FIGURE 16-13. Schematic representation of the standard free energy landscape for the cat-

alytic network of an enzyme reaction. Conformational changes occur along both axes. The

conformational changes occurring along the Reaction Coordinate axis correspond to the envi-

ronmental reorganization that facilitates the chemical reaction. In contrast, the conformational

changes occurring along the Ensemble Conformations axis represent the ensembles of con-

figurations existing at all stages along the reaction coordinate, leading to a large number of

parallel catalytic pathways. The reaction paths can slide along and between both coordinates.

For real enzymes, the number of maxima and minima along the coordinates is expected to be

greater than shown. The free energy landscape and dominant catalytic pathways will be altered

by external conditions and protein mutations. Reproduced in part with permission from G. G.

Hammes, S. J. Benkovic, and S. Hammes-Schiffer, Biochemistry 50, 10422 (2011). © 2011 by

American Chemical Society.

breaking and forming occurs much faster than this millisecond timescale and can

be viewed as a rare event that occurs only after sufficient conformational sampling

generates a configuration conducive to the chemical reaction.

The impact of mutations on the hydride transfer rate constant for DHFR can be

understood in terms of the free energy barrier along the collective reaction coordinate

for hydride transfer. As discussed in Chapter 15, the free energy barrier, or standard

Gibbs energy barrier, can be viewed as the relative probability of sampling configura-

tions at the top of the barrier compared to those in the reactant minimum. Mutations

alter the potential energy surface on which the protein and ligands move, thereby

altering the relative probabilities of sampling these regions of the multidimensional

surface. By changing the equilibrium conformational sampling of the system, the

mutation changes the free energy barrier and therefore the rate constant. This perspec-

tive has significant implications for protein engineering and drug design. In addition

to structural changes, the impact of mutations on the equilibrium conformational

motions should also be considered.



PROBLEMS 379

Thus, molecular simulations of DHFR have provided insights into the fundamental

principles underlying enzyme catalysis. A wide range of other enzymes have also

been studied with these types of computational methods. As the algorithms are

improved and computers become faster, further insights will be obtained from

molecular simulations. These types of advances will enable the computational

design of highly efficient and specific enzymes and inhibitors for both medical and

technological purposes.
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PROBLEMS

16-1. Consider two atoms, labeled A and B, interacting according to the van der

Waals interaction given in Eq. (16-10). The minimum interaction energy

occurs at a separation of Rmin. Assume there are no other atoms in the system.

a. The two atoms are separated by Rmin + 0.5 Å. Is the interaction between

the atoms attractive or repulsive at this distance? Does the force on the

atoms pull them toward each other or push them away from each other?

b. The two atoms are separated by Rmin − 0.5 Å. Is the interaction between

the atoms attractive or repulsive at this distance? Does the force on the

atoms pull them toward each other or push them away from each other?

c. The two atoms are separated by Rmin. Is the interaction between the

atoms attractive or repulsive at this distance? Does the force on the

atoms pull them toward each other or push them away from each other?

16-2. Consider a molecular dynamics simulation of liquid ethane (C2H6). The fol-

lowing questions relate to the molecular mechanical force field.
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a. How many bonds, angles, and dihedrals (torsion angles) should be

defined to characterize the topology of a single ethane molecule? Here

you need to count all of the possible bonds, three-atom angles, and tor-

sion angles. All of the corresponding bonding interaction energies for

each ethane molecule are included in the force field.

b. There are only two atom types in the ethane molecule (“C” and “H”),

and each atom type is assigned van der Waals parameters and a par-

tial charge to describe the nonbonding interactions. The nonbonding

interaction energies for all pairs of ethane molecules are included in

the force field. Consider the intermolecular interaction between two

ethane molecules. How many nonbonding interactions between two

carbon atoms should be included? How many nonbonding interactions

between two hydrogen atoms should be included? How many non-

bonding interactions between a carbon and a hydrogen atom should

be included? In each case, a single nonbonding interaction is assumed

to include both van der Waals and Coulomb interactions, and only the

intermolecular nonbonding interactions between two ethane molecules

should be counted.

c. Consider the dihedral angle H1-C1-C2-H2 in an ethane molecule,

where H1 is bonded to C1 and H2 is bonded to C2. What is the

periodicity of the corresponding dihedral angle potential U
𝜙

? Sketch

the plot of the potential for this dihedral as a function of the angle

changing from 0 to 360 degrees. Here each minimum of the potential

should correspond to the energetically most favorable conformation

of the molecule.

16-3. Consider a single particle of a unit mass m =1 moving in a one-dimensional

harmonic potential U(x) = 1

2
(x − 1)2. At time t = 0, the position of the particle

is x(0) = 0 and the velocity of the particle is v(0) = 0. Assume that all units

are consistent and that you do not need to carry them through the problem.

a. Calculate the initial force F(0) acting on the particle at t = 0.

b. Propagate the position and velocity of the particle for a single time step

Δt = 0.5 using the velocity Verlet algorithm given in Eqs. (16-14) and

(16-15). The acceleration can be calculated with Eq. (16-12) with the

force calculated from Eq. (16-13).

c. The total energy of the particle is the sum of the kinetic and potential

energies. Calculate the total energy of the particle at initial time t = 0

and at time t = 0.5 after the first propagation step.

d. In an isolated system, the total energy should be conserved along a

trajectory. Based on your answer from the previous part, was the total

energy conserved during the single time step you propagated? If not,

explain why not.

16-4. Consider the equilibration stage of a molecular dynamics simulation of a pro-

tein in water. At a certain time step, the instantaneous temperature is Tinst. If the
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target temperature is Ttarget, by what factor should you scale all of the veloci-

ties so that the new instantaneous temperature is Ttarget? This factor should be

independent of mass.

16-5. The hydride transfer reaction catalyzed by DHFR was simulated using an EVB

potential energy surface with the umbrella sampling method described earlier

to generate the free energy curve along a collective reaction coordinate at 298

K. When the residue Gly121 was mutated to Val, the standard Gibbs energy

barrier increased by 3.4 kcal/mol. Using transition state theory, estimate the

change in rate constant that this simulation predicts will be observed for this

mutant relative to the wild-type enzyme.
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CHAPTER 17

Ligand Binding to Macromolecules

17.1 INTRODUCTION

The binding of ligands to macromolecules is a key element in virtually all biological

processes. Ligands can be small molecules, such as metabolites, or large molecules,

such as proteins and nucleic acids. Ligands bind to a variety of receptors, such as

enzymes, antibodies, DNA, and membrane-bound proteins. For example, the bind-

ing of substrates to enzymes initiates the catalytic reaction. The binding of hormones,

such as insulin, to receptors regulates metabolic events, and the binding of repres-

sors and activators to DNA regulates gene transcription. The uptake and release of

oxygen by hemoglobin is essential for life. Indeed, compilation of a comprehen-

sive list of biological processes in which ligand binding plays a key role would be

a formidable task.

In this chapter, we shall discuss how to analyze ligand binding to macromolecules

quantitatively for both simple and complex systems. We will also consider experimen-

tal methods that are used to study ligand binding. The application and importance of

this analysis for biology will be illustrated through specific examples. The treatment

presented will be adequate for most situations: more complete (and more complex)

discussions of this topic are available (1–3).

17.2 BINDING OF SMALL MOLECULES TO MULTIPLE IDENTICAL
BINDING SITES

The binding of a small molecule to identical sites on a macromolecule is a com-

mon occurrence. For example, enzymes frequently have several binding sites for

substrates on a single molecule. Proteins have multiple binding sites for protons

that are often essentially identical, for example, carboxyl or amino groups. Let us

assume the simplest case, namely, a single ligand, L, binding to a single site on a

protein, P:

L + P ⇌ PL (17-1)

Physical Chemistry for the Biological Sciences, Second Edition.
Gordon G. Hammes and Sharon Hammes-Schiffer.
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This equilibrium can be characterized by the equilibrium constant, K:

K = [PL]
[P][L]

(17-2)

Binding equilibria involving macromolecules are conveniently characterized by a

binding isotherm, the moles of ligand bound per mole of protein, r. For the afore-

mentioned case,

r = [PL]
[P] + [PL]

= K[L]
1 + K[L]

(17-3)

A plot of r versus [L] is shown in Figure 17-1a: it is a hyperbolic curve with a limiting

value of 1 at high ligand concentrations, and when r= 0.5, [L]= 1/K.

If there are n identical binding sites on the protein, the binding isotherm for the

macromolecule is simply the sum of those for each of the sites:

r = nK[L]
1 + K[L]

(17-4)

(a)

(b) (d)

[L]

1/[L]

[L](c)

[L]lr

rl[L]

n/2
slope = 1/n

slope = –K

1/n

nK

n

slope = 1/(nK)

1/K 1/(nK)

r

1/r

r

FIGURE 17-1. Plots of binding isotherms for n identical sites on a macromolecule according

to (a) Eq. (17-4), (b) Eq. (17-5), (c) Eq. (17-6), and (d) Eq. (17-7). When n =1, the curve in (a)

obeys Eq. (17-3).
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A plot of r versus [L] has the same shape as before, but now the limiting value of r at

high ligand concentrations is n, the number of identical binding sites on the macro-

molecule, and when r = n/2, [L] = 1/K. Thus, a study of ligand binding to a protein

containing n identical binding sites permits determination of the number of binding

sites and the equilibrium binding constant. In practice, alternative plots of the data

are frequently used that yield a straight line plot and therefore can be analyzed more

easily. With the availability of nonlinear least squares programs on desktop comput-

ers, this is not really necessary. However, it should be kept in mind that statistical

analyses always fit the data—this does not necessarily mean that the fit is a good one.

The quality of the fit must carefully be examined to be sure that the equations used

and the fitting procedures are appropriate. In addition, it is extremely important that

a very wide range of ligand concentration is used.

The most obvious recasting of Eq. (17-4) is to take its reciprocal:

1

r
= 1

n
+ 1

nK[L]
(17-5)

A plot of 1/r versus 1/[L] is a straight line with an intercept on the [L] axis of 1/n and

a slope of 1/(nK). Another possibility is to multiply Eq. (17-5) by [L]:

[L]
r

= [L]
n

+ 1

nK
(17-6)

If [L]/r is plotted versus [L], a straight line is obtained with a slope of 1/n and an

intercept of 1/(nK). A common alternative plot is a Scatchard plot (4), named after

George Scatchard, a pioneer in the study of small molecule binding to proteins. Rear-

rangement of Eq. (17-4) gives

r
[L]

= nK − rK (17-7)

A plot of r/[L] versus r is a straight line, with the intercept on the x-axis (r/[L] = 0)

being equal to the number of binding sites, n, and the intercept on the y-axis being

equal to nK. Examples of these straight line plots are included in Figure 17-1.

17.3 MACROSCOPIC AND MICROSCOPIC EQUILIBRIUM CONSTANTS

Before we proceed further with the analysis of ligand binding to macromolecules,

it is important to understand the distinction between macroscopic and microscopic

equilibrium constants. Consider, for example, a dibasic acid such as the amino acid

glycine. Four protonation states are possible:

GH+
2
= H3NCH2COOH

GH = H2NCH2COOH

GH′ = +H
3
NCH2COO−

G− = H2NCH2COO−
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If a pH titration is carried out, the states GH and GH′ cannot be distinguished as they

contain the same number of protons. The pH titration can be used to determine the

macroscopic ionization constants:

K1 = ([GH] + [GH′])[H+]
[GH2

+]
(17-8)

K2 = [G−][H+]
([GH] + [GH′])

(17-9)

The two pK values determined by pH titration are pK1 = 2.35 and pK2 = 9.78 (25∘C
and zero salt concentration).

If we consider the microscopic states of glycine, four microscopic ionization con-
stants, ki, are needed to characterize the system:

+H3NCH2COOH H2NCH2COO–

H2NCH2COOH

k1

k2

k3

k4

+H3NCH2COO−

Note that these four microscopic ionization constants are not independent because

this is a closed cycle. If the four microscopic ionization constants are written in terms

of the concentrations, it can be seen that

k1k3 = k2k4 (17-10)

This is an example of the principle of detailed balance. Whenever a closed cycle of

reactions occurs, a relationship between the individual equilibrium constants such

as Eq. (17-10) exists. The relationship between the macroscopic and microscopic

ionization constants can easily be seen by reference to Eqs. 17-8 and 17-9, namely,

K1 = k1 + k2 (17-11)

and

K2 =
k3k4

(k3 + k4)
(17-12)

Since the two macroscopic ionization constants and Eq. (17-10) provide only three

relationships between the microscopic ionization constants, it is apparent that the
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microscopic ionization constants cannot be determined from a pH titration. In order

to calculate the microscopic ionization constants, additional information is needed. In

this case, it might be assumed that k2 is equal to the ionization constant determined

by pH titration of the methyl ester of glycine, namely, pk2 = 7.70. This assumes

that the ionization constant for protonation of the amino group is the same when

either a proton or a methyl group is bound to the carboxyl, which is not unrea-

sonable. With this assumption, the other three microscopic pK values can be calcu-

lated: pk1 = 2.35, pk3 = 9.78, and pk4 = 4.43. These results indicate that the bottom

state in the ionization scheme is present at very low concentrations throughout a pH

titration.

This is a simple illustration of the distinction between macroscopic and micro-

scopic equilibrium constants. Experimental measurements usually only give infor-

mation about macroscopic binding constants although exceptions exist. For example,

the state of protonation of the nitrogen can be monitored by nuclear magnetic res-

onance (NMR) so that, in principle, a titration curve can be obtained for the amino

group independently of that for the dibasic acid.

17.4 STATISTICAL EFFECTS IN LIGAND BINDING TO
MACROMOLECULES

Let us return again to the binding of a ligand to multiple identical binding sites on a

macromolecule and consider the matter of macroscopic and microscopic equilibrium

constants. As a simple example, consider a macromolecule, P, with two identical

binding sites; symbolically, one of the binding sites will be on the left of P and the

other on the right of P. The macroscopic equilibrium constants are

K1 = ([PL] + [LP])
[L][P]

(17-13)

and

K2 =
[PL2]

[L]([PL] + [LP])
(17-14)

In relating this discussion to the previous consideration of glycine, it should be noted

that the glycine proteolytic equilibria are characterized by equilibrium dissociation
constants whereas equilibrium association constants are used here.

The equilibrium binding isotherm can be written as

r =
[PL] + [LP] + 2[PL2]

[P] + [PL] + [LP] + [PL2]
(17-15)

If both the numerator and the denominator are divided by [P], it can easily be seen

that

r =
K1[L] + 2K1K2[L]2

1 + K1[L] + K1K2[L]2
(17-16)
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This does not look the same as Eq. (17-4). This is because the equilibrium constant

in Eq. (17-4) is the microscopic equilibrium constant. In this case, it is easy to see

that K1 = 2K and K2 = K/2. If these relationships are put into Eq. (17-16),

r = 2K[L](1 + K[L])
(1 + K[L])2

r = 2K[L]
1 + K[L]

Thus, in the case of multiple identical binding sites, the binding isotherm is

the same whether macroscopic or microscopic equilibrium constants are con-

sidered. The relationship between microscopic and macroscopic constants for

this particular case is particularly simple. When both sites are empty, there are

two possible sites available for the ligand so that the macroscopic equilibrium

constant is twice as large as the microscopic constant. When both sites are

occupied by a ligand, there are two sites from which the ligand can dissociate;

therefore, the macroscopic equilibrium constant is one-half of the microscopic

constant.

If more than two identical binding sites are present, the relationship between the

macroscopic and microscopic equilibrium constants can be determined in a similar

manner. If a macromolecule has n identical binding sites, the relationship between

the macroscopic equilibrium constant for binding to the ith site and the microscopic

equilibrium constant is

Ki =
number of free sites on P before binding

number of occupied sites on P after binding
K

Ki = [(n − i + 1)∕i]K, i ≥ 1 (17-17)

We now return to consideration of a macromolecule with n identical binding sites.

The macroscopic equilibria are

L + P ⇌ PL

L + PL ⇌ PL2

⋮ ⋮

L + PLn−1 ⇌ PLn (17-18)

The corresponding macroscopic equilibrium constants are

K1 = [PL]∕([P][L])

⋮ ⋮

Kn = [PLn]∕([L][PLn−1]) (17-19)
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The binding isotherm can be written as

r =
[PL] + 2[PL2] + · · · + n[PLn]

[P] + [PL] + [PL2] + · · · + [PLn]
(17-20)

If we divide the numerator and denominator by [P] and use the definitions of the

macroscopic association constants for the ratios [PLi]/[P], Eq. (17-20) becomes

r =
K1[L] + 2K1K2[L]2 + · · · + nK1K2 · · ·Kn[L]n

1 + K1[L] + K1K2[L]2 + · · · + K1K2 · · ·Kn[L]n
(17-21)

This equation describes the binding of a ligand to n different binding sites as no rela-

tionship has been assumed between the binding constants. If the sites are identical,

the macroscopic constants are related to the microscopic or intrinsic binding constant

by Eq. (17-17). If this relationship is inserted into Eq. (17-21), it becomes

r =
nK[L] + 2n(n−1)

2! K2[L]2 + · · · + nKn[L]n

1 + nK[L] + n(n−1)
2! K2[L]2 + · · · + Kn[L]n

r = nK[L](1 + K[L])n−1

(1 + K[L])n
= nK[L]

1 + K[L]
(17-22)

The binomial theorem has been used to obtain the final result; that is, the series of

terms in the denominator that contain successive powers of [L] is recognized as the

expansion of (1 + K[L])n. Similarly, the expansion of (1 + K[L])n−1 can be factored

out of the numerator. This result is exactly the same as Eq. (17-4), which was obtained

in a more intuitive manner.

To conclude this section, we consider the situation where a macromolecule has

more than one set of independent identical binding sites for a ligand. In this case, the

equilibrium binding isotherm is simply a sum of the terms given in Eq. (17-4), with

the number of terms in the sum being equal to the number of sets of binding sites:

r =
∑ niKi[L]

1 + Ki[L]
(17-23)

Here ni and Ki are the number of sites in each set and the intrinsic equilibrium con-

stant for each set, respectively. Unless independent information is available about the

structure of the macromolecule, it is usually preferable to use Eq. (17-21) to fit the

data as no assumptions are made about the nature or number of the binding sites in

this case.

Virtually any ligand binding isotherm can be fit to Eq. (17-21), but this is not a

meaningful exercise unless the result can be related to the structure and/or the func-

tion of the macromolecule. For example, the binding isotherm for the binding of

laurate ion to human serum albumin is shown in Figure 17-2 (5,6). The concentration

range covered is so large that the concentration axis is logarithmic. The corresponding

Scatchard plot is also shown in Figure 17-2. It is clear that saturation of the binding
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FIGURE 17-2. (a) Plot of r versus log [L] for the binding of laurate ion by human serum

albumin. (b) The same data plotted as r/[L] versus r (Scatchard plot). Adapted from I.M. Klotz,

Ligand-Receptor Complexes, John Wiley & Sons, Inc. New York, 1997. Copyright © 1997

John Wiley & Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc.

sites on serum albumin is never reached. The data in the figures, nevertheless, can

be fit well with the assumption that n = 10. Clearly, this does not establish that 10

binding sites exist, nor regrettably does it provide information about the structure of

the macromolecule. We will not dwell on this matter here. We will, however, return

to the topic of multiple binding sites when discussing the concept of cooperativity.

17.5 EXPERIMENTAL DETERMINATION OF LIGAND BINDING
ISOTHERMS

We will now make a digression to discuss briefly some of the experimental aspects

of ligand binding studies. Many different experimental methods exist for determin-

ing the binding of ligands to macromolecules. The experimental methods used fall

into two classes: (i) direct determination of the unbound ligand concentration and (ii)

measurement of a change in physical or biological property of the ligand or macro-

molecule when the ligand binds. Generally, stoichiometry and binding constants can

be determined reliably only if concentrations of the unbound ligand, the bound ligand,

and the unbound macromolecule can be determined.

The most straightforward method is equilibrium dialysis. This method is pictured

schematically in Figure 17-3. With this method, a solution is separated into two parts

by a semipermeable membrane, which will not permit the macromolecule to cross



17.5 EXPERIMENTAL DETERMINATION OF LIGAND BINDING ISOTHERMS 393

Semipermeable membrane

Ligand
Macromolecule

+
Ligand

FIGURE 17-3. Schematic representation of an equilibrium dialysis experiment. The macro-

molecule is on one side of a semipermeable membrane and cannot pass through the membrane.

The ligand can pass through the membrane and therefore is on both sides of the membrane.

The concentration of the ligand on the side of the membrane that does not contain the macro-

molecule is equal to the concentration of the unbound ligand.

but will permit the ligand to pass freely. The macromolecule is put on one side of the

membrane and the ligand on both sides. The system is then permitted to come to equi-

librium. At equilibrium, the concentration of the unbound ligand is the same on both

sides of the membrane. (Strictly speaking, their thermodynamic activities are equal,

but we will not worry about the difference between activity and concentration here.)

If the total amount of ligand is known, and the unbound amount of ligand is known,

the amount of bound ligand can be determined from mass balance. The concentration

of the macromolecule can be determined independently so that the binding isotherm

can be calculated directly.

If equilibrium dialysis is to provide reliable data for analysis of the binding

isotherm, it is usually necessary for the concentrations of bound and unbound ligand

and macromolecule to be comparable. If essentially all of the ligand is bound,

the amounts of unbound ligand and/or protein become very small and difficult

to determine. On the other hand, if essentially no ligand is bound, calculation

of the bound ligand becomes problematic. In the former case, the stoichiometry

of binding can often be determined, but not the binding constant(s). In the latter

case, it is virtually impossible to determine either the stoichiometry or the binding

constant(s). Another way of stating this is that the concentrations of all the species

should be the same order of magnitude as the reciprocal of the binding constant so

that experimental points can be determined over a wide range of r. This limitation

becomes restrictive for very weak binding, primarily in terms of the large amount of

material required. In the case of very tight binding, it may be difficult to work with

the very dilute solutions required.

Equilibrium dialysis is an example of the more general method of determining the

distribution between phases. This could, for example, be the equilibration between

two nonmiscible solvents that partition the reactants, although this is rarely used.

Various gel exclusion media such as Agarose are, however, often used. Such gels

will exclude macromolecules from their beads, with the size of the macromolecule

excluded depending on the property of the specific gel. The gel will include the ligand

so that the gel bead serves as a semipermeable membrane, with equilibration occur-

ring between the inside and the outside of the bead. If a macromolecule is passed

through a column equilibrated with a given ligand concentration, the unbound ligand
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concentration is equal to this concentration. The amount of ligand bound and the

macromolecule concentration can be determined by analysis of the column effluent.

Many variations on this type of experimental protocol exist.

In some cases, the concentration of the unbound ligand is determined directly in

the absence of a semipermeable membrane, for example, by a biological assay. In

this case, the implicit assumption is that the rate of equilibration of the ligand and

macromolecule occurs more slowly than the time for analysis. This is not necessarily

the case, so such methods must be used with extreme caution.

Perturbations in the physical properties of the ligand are often used to determine

binding isotherms. However, some care and caution must be taken in doing so. The

most frequent situation is when the optical absorption properties of the ligand are

different for the bound and unbound ligand, or for the macromolecule with and with-

out ligand. The technique of difference spectroscopy is often used (cf. Chapter 10).

With this method, the difference in the optical absorption of a solution containing the

ligand and a solution containing the same concentration of ligand plus the macro-

molecule is determined. If the concentration of the total ligand in the first solution

is [LT] and the concentrations of the free (unbound) ligand and the bound ligand are

[Lf] and [Lb], respectively, this difference, ΔA, can be written as

ΔA = 𝜀f[LT] − 𝜀f[Lf] − 𝜀b[Lb]

ΔA = (𝜀f − 𝜀b)[Lb] (17-24)

where 𝜀i are extinction coefficients and the relationship [LT] = [Lf] + [Lb] has

been used. This derivation assumes that the extinction coefficient of bound ligand

is the same at all binding sites, which may or may not be valid. Consequently,

this method is not as direct as the partitioning methods previously described. The

difference extinction coefficient, 𝜀f − 𝜀b, can be determined by extrapolation to high

ligand concentrations where the macromolecule is saturated with the ligand. The

difference absorbance measurements will then permit the determination of the bound

ligand concentration, and the concentrations of the other species can be determined

by mass balance. This method also works if the spectral change occurs in the

macromolecule rather than in the ligand. The only difference is that the comparison

solution contains macromolecule rather than ligand, and the concentrations and

extinction coefficients of the protein appear in Eq. (17-24). Perhaps not so obvious

is the fact that this method also works if spectral changes occur in both the ligand

and the macromolecule when the ligand binds. The derivation of ΔA for this case is

given in Chapter 10.

As a specific example of a difference spectrum titration, the difference absorbance

is shown as a function of the ligand concentration for the binding of 2′-cytidine

monophosphate to ribonuclease A in Figure 17-4 (7). Other optical properties such

as fluorescence and circular dichroism can be used in a similar manner. Finally, it

is sometimes possible to monitor a specific site on the macromolecule with physi-

cal methods such as NMR or other types of spectroscopy. If changes occur when the

ligand binds, the concentrations of empty and occupied sites can be determined and

translated into binding isotherms.
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FIGURE 17-4. Plot of the absorbance difference at 288 nm, ΔA, accompanying the binding

of 2′-CMP to ribonuclease A versus the concentration of unbound 2′-CMP at pH 5.5, 25∘C.

The total enzyme concentration is 10−4 M. The difference extinction coefficient is 2.88 × 103

cm−1 M−1 and the binding constant is 2.96 × 105 M−1. The curve was calculated from the data

in D.G. Anderson, G.G. Hammes, and Frederick G. Walz, Jr., Biochemistry 7, 1637 (1968).

The dashed line is the difference absorbance when all of the enzyme has been converted to

enzyme-2′-CMP.

The determination of high-quality binding isotherms is not trivial, and this dis-

cussion does not do full justice to the topic. One of the difficulties not discussed that

should be mentioned is the occurrence of nonspecific binding. It is commonplace for

nonspecific binding to occur along with binding of the ligand to the site(s) of interest.

Macromolecules have many different side chains that can attract ligands, for example,

by charge–charge interactions. This nonspecific binding is characterized by binding

isotherms that do not level off at a specific value of n due to a large number of such

sites characterized by very weak (small) binding constants. More complete treatises

concerned with the experimental aspect of the binding of ligands to macromolecules

are available (cf. Ref. (3)).

17.6 BINDING OF CRO REPRESSOR PROTEIN TO DNA

As an example of a ligand binding study, we will consider some of the results obtained

in the studies of the binding of the Cro repressor protein to DNA. DNA transcription

is regulated by the binding of proteins to DNA. The Cro repressor is a protein that

plays a regulatory role in 𝜆 phage. The binding of this protein to DNA has been

examined by many different methods (8–10), and the three-dimensional structure of

a Cro protein–DNA complex has been determined (11). The Cro protein binds as a

dimer, and amino acids form DNA sequence-specific hydrogen bonds with exposed

parts of DNA bases. Both the thermodynamics and the kinetics of Cro protein binding

to DNA have been studied extensively.

The binding of Cro protein to DNA is difficult to study because the binding is

very tight. In order to study the binding, a very sensitive filter binding assay was
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TABLE 17-1. Binding Constants and Dissociation Rate Constants at 273 K for Cro

Protein–𝜆DNA

Operator K (M−1) kd(s−1)

Consensus 8.3 × 1011 7.7 × 10−5

OR3 5.0 × 1011 1.7 × 10−4

OR2 8.3 × 109 1.2 × 10−2

OR1 1.2 × 1011 1.7 × 10−3

OL1 6.7 × 1010 2.2 × 10−3

OL2 3.7 × 1010 2.6 × 10−3

OL3 1.9 × 1010 9.2 × 10−3

Source: J. G. Kim, Y. Takeda, B. W. Matthews, and W. F. Anderson, J. Mol. Biol. 196, 149 (1987).

used. Under certain conditions, linear duplex DNA passes through nitrocellulose fil-

ters, while a protein or protein–DNA complex is retained. Radioactive (32P) DNA was

prepared and mixed with Cro protein at very low concentrations (as low as <1 ng/ml).

The reaction mixture was filtered within a few seconds, and from the radioactivity

bound to the filter, the concentration of Cro protein–DNA could be calculated. Since

the total concentrations of Cro protein and DNA are known, the equilibrium con-

centrations of all species can be calculated. The binding of Cro protein to various

operator regions of 𝜆 phage DNA was studied. The operator is 17 base pairs long,

but the DNAs investigated contained an extra 2 base pairs at each end. In addition,

a consensus operator was constructed that had the consensus sequence of the six 𝜆

operator regions examined. The consensus sequence is identical to the OR3 operator,

except for a few base pairs on the interior of the sequence.

The equilibrium association constants obtained are given in Table 17-1. The stoi-

chiometry of the reaction was determined to be one to one. The association constants

are very large, with the largest being for the consensus and OR3 operators. The OR3

operator was previously determined to be the preferred binding site for Cro protein.

The binding of Cro operator to nonspecific DNA was also determined and found to

be a linear function of the length of the DNA with a binding constant of 6.8 × 105

M−1 per base pair, considerably weaker than the specific binding, as expected. The

rate constants characterizing the reaction between the DNA operator sequences and

the Cro protein were also determined. The dissociation rate constants are included in

Table 17-1. The association rate constants that could be measured were all approxi-

mately 3 × 108 M−1 s−1, the value expected for a diffusion controlled reaction. Every

time a Cro protein and the operator DNA collide, a complex is formed.

The binding of Cro protein to long DNAs containing the operator region was also

studied. The length of DNA varied from 73 to 2410 base pairs. For all except the short-

est DNA, the equilibrium constant was about the same, 6.7 × 1010 M−1. However, the

association and dissociation rate constants increase as the length of DNA increased,

leveling off at values of about 4.5 × 109 M−1 s−1 and 1.7 ×10−2 s−1, respectively.

This very high second-order rate constant suggests that every time Cro protein col-

lides with DNA, it binds very tightly. This result is puzzling as it would be expected

that Cro protein would have to sample various parts of the DNA until it found the
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operator and bound tightly. An explanation for these results is that Cro protein binds

to the DNA on every collision and then diffuses rapidly along the DNA chain until it

encounters the operator region. The rapid sliding of DNA binding protein along the

DNA chain until it finds the correct place for a specific interaction appears to occur

in other systems, but other mechanisms may also be operative.

Calorimetry was also carried out on the binding reaction (10). The results

obtained indicate that the association of Cro protein with nonspecific DNA at

15∘C is characterized by ΔH∘ = 4.4 kcal/mol, ΔS∘ = 49 cal/(mol K), ΔG∘ =
−9.7 kcal/mol, and ΔCP ≈0. The parameters obtained with the OR3 DNA are

quite different, ΔH∘ = 0.8 kcal/mol, ΔS∘ = 59 cal/(mol K), ΔG∘ = −16.1 kcal/mol,

and ΔCP =−360 cal/(mol K). In both cases, the favorable Gibbs energy change is

entropy driven.

The specific molecular interactions between the DNA and the Cro protein have

been probed by studying the binding of Cro protein to OR1 DNA, 21 base pairs as

mentioned earlier, with systematic base substitutions along the entire DNA chain (9).

Experiments were also carried out with point mutations in the protein of amino acids

thought to be involved in the binding interaction. The changes in Gibbs energy were

then interpreted as due to specific interactions between the protein and the DNA, and

a structural map of the interactions was proposed. A high resolution crystal structure

of a Cro protein–DNA complex determined some years later provided a definitive

description of the molecular interactions (11). Many features proposed on the basis

of the binding/mutation studies proved to be correct although some were not. As

often stated in this text, molecular interpretations of thermodynamic studies must

be viewed with caution. However, in retrospect, all of the mutation studies can be

understood in terms of the crystal structure. A view of the overall complex is pre-

sented in Figure 17-5. Each Cro protein monomer consists of three 𝛼-helices and

three 𝛽-strands. Only the helix–turn-helix portion of the protein makes direct contact

with the DNA bases: the 𝛼3-helix is inserted into the major groove of DNA and its

interactions with DNA bases account for the tight operator binding. A schematic map

of the DNA base–Cro protein interactions is shown in Figure 17-6. Multiple hydrogen

bonds are formed, although other types of interactions are also important. Both the

protein and the DNA conformations are altered when the complex is formed. Many

other interesting details of the molecular interactions can be inferred from the crystal

structure but will not be considered here.

This study is an elegant demonstration of the type of information that can be

obtained from thermodynamic, kinetic, and structural studies of ligand binding.

17.7 COOPERATIVITY IN LIGAND BINDING

We now return to the subject of macromolecules with multiple ligand binding sites.

One of the most famous and best studied examples is hemoglobin. In Figure 17-7, the

binding isotherm is shown for the binding of oxygen to myoglobin and hemoglobin.

Hemoglobin contains four identical binding sites for oxygen. Myoglobin contains a

single binding site for oxygen. The concentration of unbound oxygen is expressed
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NN′

FIGURE 17-5. Structure of the overall complex between Cro protein and 𝜆 operator DNA.

The direction of the view is parallel with the major grooves of DNA and parallel with the

recognition helices. Reproduced from R. A. Albright and B. W. Matthews, “Crystal structure

of lambda-Cro bound to a consensus operator” J. Mol. Biol. 280, 137 (1998). Copyright 1998,

with permission from Elsevier.

in pressure units of mmHg and rather than r; the percent saturation (r/n) is shown so

that the binding isotherms can be compared directly even though n = 1 for myoglobin

and 4 for hemoglobin. The binding isotherm for myoglobin can be fit to Eq. (17-4)

with K = 0.23 (mmHg)−1 {K = [MyO2]/([My][O2]), where My is myoglobin}. The

data for hemoglobin clearly cannot be fit so simply, as the binding isotherm is not

hyperbolic. Equation (17-21) can be used, however. Before doing so, it is useful to

take into account the statistical effects associated with identical binding sites, that is,

express Eq. (17-21) in terms of intrinsic binding constants rather than macroscopic

binding constants by use of Eq. (17-17). With this substitution, Eq. (17-21) becomes

r =
4K1[O2] + 12K1K2[O2]2 + 12K1K2K3[O2]3 + 4K1K2K3K4[O2]4

1 + 4K1[O2] + 6K1K2[O2]2 + 4K1K2K3[O2]3 + K1K2K3K4[O2]4
(17-25)

If this equation is used to fit the data obtained at pH 7.4, 25∘C, 0.1M NaCl, the bind-

ing constants obtained are 0.024, 0.077, 0.083, and 7.1 (mmHg)−1 (12). Note that the

intrinsic binding constant becomes larger as each oxygen is bound. This is an example

of cooperative binding. When an oxygen binds to hemoglobin, it increases the affin-

ity of hemoglobin for the next oxygen. The result is a sigmoidal binding isotherm

rather than a hyperbolic isotherm. This has important physiological consequences as

it permits oxygen to be picked up and released over a very narrow range of oxygen

pressure. Cooperative binding such as this is found frequently because it permits the

biological activity to be regulated over a very narrow range of concentration.
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FIGURE 17-6. Schematic diagram of the interactions between the Cro protein and the 𝜆 oper-

ator DNA. The interactions for one of the polypeptide chains are shown, as the interactions

with the other polypeptide chain of the dimeric Cro protein are symmetric. Hydrogen bonds

are shown as continuous lines with arrows pointing from the donor to the acceptor. Broken

lines are van der Waals contacts, bkbn indicates a contact with the protein backbone, and the

dotted lines are presumed electrostatic interactions. Reproduced from R. A. Albright and B. W.

Matthews, crystal structure of lambda-Cro bound to a consensus operator, J. Mol. Biol. 280,

137 (1998). Copyright 1998, with permission from Elsevier.

When the binding of oxygen by hemoglobin was first studied, the binding isotherm

was fit by the empirical equation

r
n
=

[L]𝛼∕K𝛼

1 + [L]𝛼∕K𝛼

(17-26)

where the equilibrium constant is expressed as a dissociation constant and 𝛼 is an

empirical parameter called the Hill coefficient obtained from experiment by plot-

ting ln[(r/n)/(1 − r/n)] versus ln[L] (13). {Note that (r/n)/(1 − r/n) = [L]𝛼/K𝛼 .} As

might be expected, such plots are linear over a limited range of ligand concentration.

In the case of hemoglobin, 𝛼 is about 2.5 and depends on the specific experimental
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FIGURE 17-7. Binding of oxygen by myoglobin and hemoglobin at pH 7 and 38∘C. The

pressure of O2 is a measure of the concentration of unbound O2. Adapted from F. Daniels and

R. A. Alberty, Physical Chemistry, 4th edition, John Wiley & Sons, Inc., New York, 1975. ©

1975 John Wiley and Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc.

conditions. The use of this equation does not have a physical meaning. It implicitly

assumes that the binding equilibrium is

Hemoglobin + 𝛼O2 ⇌ Hemoglobin(O2)𝛼

Obviously, the number of binding sites on hemoglobin must be an integer. Neverthe-

less, cooperative binding is frequently characterized by a Hill coefficient. The closer

the Hill coefficient is to the actual number of binding sites, the more cooperative the

binding.

It is also possible to have binding isotherms in which the binding constants

decrease as successive ligands bind. This is usually termed negative cooperativity
or anticooperativity, both oxymorons of a sort. It should be remembered that if

macroscopic equilibrium binding constants are used, the binding constants decrease

as each ligand is added to the macromolecule even if the sites are equivalent. This

is the statistical effect embodied in Eq. (17-17). Anti- or negative cooperativity

therefore means that the binding constants decrease more than the statistical effect

expected for equivalent sites. An example of negative cooperativity is shown in

Figure 17-8 for the binding of cytidine 3′-triphosphate (CTP) to the enzyme aspartate

transcarbamoylase (14). This enzyme catalyzes the carbamylation of aspartic acid at

a branch point in metabolism that eventually leads to the synthesis of pyrimidines.

When the concentration of CTP becomes high, it inhibits aspartate transcarbamoy-

lase and shuts down the metabolic pathway for its synthesis. As can be seen from

the Scatchard plot presented, the data clearly do not conform to the straight line

expected for independent equivalent binding sites. The total number of binding sites

appears to be six, although extrapolation to this number is not precise. In this case,
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FIGURE 17-8. Scatchard plot for the binding of CTP to aspartate transcarbamoylase at 4∘C
and pH 7.3 in the presence of 2 mM carbamoyl phosphate and 10 mM succinate. Adapted from

S. Matsumoto and G. G. Hammes, Biochemistry 12, 1388 (1973). Copyright © 1973 American

Chemical Society.

the data were fit to a model of two sets of three independent binding sites. The

intrinsic binding constants obtained were 7.1 × 105 M−1 and 4.4 × 103 M−1. The

data could be fit equally well to Eq. (17-21), but the data were not sufficient to define

all six constants well. Aspartate transcarbamoylase is known to contain six identical

binding sites for CTP and has three dimers of identical polypeptide chains. When

CTP binds to one of the sites on a dimer, it weakens the binding for the second CTP.

Interestingly, the binding of aspartate to this enzyme exhibits positive cooperativity,

and the extent of the cooperativity is modulated by the binding of CTP, as will be

discussed later.

The presence of positive or negative cooperativity can readily be diagnosed from

the binding isotherm. The shapes of the various plots commonly used are shown in

Figure 17-9 for no cooperativity, positive cooperativity, and negative cooperativity.

The type of cooperativity occurring can readily be diagnosed from these plots. It is

particularly obvious in Scatchard plots as no cooperativity gives a straight line, a

maximum in the plot is observed for positive cooperativity, and a concave curve is

found for negative cooperativity. For some studies, log[L] is used in order that a wide

range of concentrations can be represented in a single plot (Fig. 17-9b).

When positive and negative cooperativities are observed, one must determine if

this is due to a preexisting difference between the binding sites, or if the binding of

one ligand alters the binding affinity of the remaining sites for the ligand. Usually,

but not always, the latter is true, as for the cases cited earlier. The possibility also

exists that both positive and negative cooperativity could occur in a single binding

isotherm.
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FIGURE 17-9. Schematic representations of equilibrium binding data demonstrating no

cooperativity, positive cooperativity, and negative cooperativity. In these figures, r is the moles

of ligand bound per mole of protein and [L] is the concentration of unbound ligand.

17.8 MODELS FOR COOPERATIVITY

Thus far, we have been concerned with fitting data to binding isotherms and devel-

oping criteria with regard to whether the binding is cooperative. However, the ulti-

mate goal is to relate the experimental data to molecular structure. This requires the

development of theoretical models that relate structure to ligand binding isotherms.

Two limiting models have been developed to explain cooperative ligand binding to

proteins. Both models are based on the general hypothesis that cooperativity is the
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result of alterations in the interactions between polypeptide chains through confor-

mational changes in the macromolecule. One of the models assumes a concerted

or global conformational change, whereas the other assumes a sequential change

in the conformation of each polypeptide chain or chains that contain a ligand bind-

ing site.

We first consider the concerted model that has been developed by Monod, Wyman,

and Changeux (15). This model (MWC) is based on three assumptions: (i) the protein

consists of two or more identical subunits, each containing a site for the ligand; (ii) at

least two conformational states, usually designated as R and T states, are in equilib-

rium and differ in their affinities for the ligand; and (iii) the conformational changes

of all subunits occur in a concerted manner (conservation of structural symmetry).

A schematic illustration of the MWC model for a four-subunit protein is shown in

Figure 17-10. A sigmoidal binding isotherm can be generated from this model in the

following way. In the absence of ligand, the protein exists largely in the T state (the

square conformation), but the substrate binds preferentially to the R state (the circular

conformation). When the ligand binds, it shifts the protein from the T to the R state.

Thus, at low ligand concentrations, the protein is primarily in the T state, whereas at

high ligand concentration, the protein is largely in the R state. This shift in equilibria

can give rise to a sigmoidal binding isotherm, or positive cooperativity. This model

cannot, however, explain anti(negative) cooperativity.

The quantitative development of this model is complex, although not difficult,

and will only be given in outline form here. The scheme for ligand binding can be

represented as

4L +

Concerted model (MWC)

+ 4L

L L

L

L L

L

L L

L

L L L L
LLLL

L L L

3L + + 3L 

2L + + 2L 

L + + L

FIGURE 17-10. Schematic representation of the Monod–Wyman–Changeux model for a

four-subunit protein. The squares and circles designate different subunit conformations of the

protein, and L is the ligand.
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nL + R0 T0 + nL 

Rn Tn 

(n − 1)L + R1

(n − i)L + Ri

T1 + (n − 1)L

Ti + (n − i)L

where R0 and T0 are the two different conformational states in the absence of ligand,

and Ri and Ti designate their complexes with i molecules of L. Three constants are

needed to specify the equilibrium binding isotherms: the intrinsic dissociation con-

stants for ligand binding to the R and T states, and the equilibrium constant for the

ratio of the R0 to T0 states. These constants can be written as

L0 = [T0]∕[R0]

KR = [(n − i + 1)∕i][Ri−1][L]∕[Ri]

KT = [(n − i + 1)∕i][Ti−1][L]∕[Ti] (17-28)

The fraction of sites occupied by the ligand, Y, can be expressed as

Y = r
n
=

([R1] + 2[R2] + · · · + n[Rn]) + ([T1] + 2[T2] + · · · + n[Tn])
n{([R0] + [R1] + · · · + [Rn]) + ([T0] + [T1] + · · · + [Tn])}

Y =
L0c𝛼(1 + c𝛼)n−1 + 𝛼(1 + 𝛼)n−1

L0(1 + c𝛼)n + (1 + 𝛼)n
(17-29)

where 𝛼 = [L]/KR and c=KR/KT. The transformation of the first part of Eq. (17-29) to

the second part requires the use of the binomial theorem and will not be detailed here.
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FIGURE 17-11. Plot of the fraction of sites bound by ligand, Y, versus 𝛼(= [L]/KR) for various

values of c and L according to Eq. (17-29). A sigmoidal binding isotherm is generated when L
is large and c is small.

The nature of the binding isotherm depends on the values of L0 and c. A hyperbolic

isotherm is obtained when the ligand binds equally well to both conformations, c =
1, and when both L0 and c are either very large or very small. However, when L0 is

large and c is small, sigmoidal binding isotherms occur as illustrated in Figure 17-11.

When c is very small, Eq. (17-29) becomes

Y = 𝛼(1 + 𝛼)n−1

L0 + (1 + 𝛼)n
(17-30)

With this limiting case, it can easily be seen that a hyperbolic isotherm is found when

L0 is small, whereas a sigmoidal isotherm is predicted when L0 is large.

The basic assumptions of an alternative model developed by Koshland, Nemethy,

and Filmer (KNF) are the following (16): (i) two conformational states, A and B, are

available to each subunit; (ii) only the subunit to which the ligand is bound changes

its conformation; and (iii) the ligand-induced conformational change in one subunit

alters its interactions with the neighboring subunits. The strength of the subunit inter-

actions may be increased, may be decreased, or may stay the same. The result of this

change in subunit interactions is that the binding of the next ligand can be weaker,

stronger, or the same as the binding of the previous ligand. Clearly, this model can

produce either positive or negative cooperativity—or a hyperbolic binding isotherm.

This sequential model is shown schematically in Figure 17-12 for a four-subunit pro-

tein in a square configuration.

Calculation of the binding isotherm for the KNF model is complex and will

not be presented here. The basic parameters are the intrinsic binding constant, an
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FIGURE 17-12. Schematic representation of the Koshland–Nemethy–Filmer model for a

four-subunit (square) protein. The squares and circles designate different subunit conforma-

tions, and L is the ligand. Note that two structures are shown for the intermediate with two

ligands bound as the subunit interactions are different for these two species.

equilibrium constant characterizing the conformational change that occurs, and

constants characterizing the subunit interactions, AB and BB. (The AA interaction

is taken as the reference state, so it does not appear in the calculation.) The binding

isotherm that results is identical in form to Eq. (17-21), except that the appropriate

statistical corrections are included so that the intrinsic binding constant appears. The

effective binding constant multiplying each successive power of L may increase,

decrease, or stay the same, depending on the nature of the subunit interactions, so

that positive, negative, or mixed cooperativity is possible.

The MWC and KNF models are limiting cases of a more general scheme shown

in Figure 17-13. This figure illustrates a general mechanism involving a tetrameric

protein and only two conformational states for each subunit. The real situation is

somewhat more complex, as the permutations of the ligand among the subunits for a

given conformational state are not shown. The extreme right- and left-hand columns

enclosed by dashed lines represent the MWC mechanism, whereas the diagonal,

enclosed by dotted lines, represents the KNF model. Thus, these two models are lim-

iting cases of an even more complex scheme. As might be suspected, distinguishing

among these models when positive cooperativity occurs is not a simple task.

17.9 KINETIC STUDIES OF COOPERATIVE BINDING

Thus far, we have confined the discussion to ligand binding at equilibrium. The bind-

ing process and the cooperativity that may occur play an important role in many

biological processes, as evidenced by hemoglobin, membrane receptor binding, and

operator binding to DNA. The role of cooperativity in regulating such reactions has

been well established. However, many enzyme reactions are also regulated through

cooperative binding processes. In such cases, the rate of the enzymatic reaction is

usually measured, often the initial velocity, and it is observed that a plot of the ini-

tial velocity versus the substrate concentration exhibits cooperativity. An example

already discussed is aspartate transcarbamoylase: a plot of the initial velocity versus

the aspartate concentration is sigmoidal so that small changes in the concentration of

aspartate can cause significant changes in the rate of the enzymatic reaction.
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FIGURE 17-13. Schematic illustration of a general allosteric model for the binding of a ligand

to a four-subunit protein. The squares and circles designate different subunit conformations.

The portion enclosed by dashed lines is the Monod–Wyman–Changeux model, whereas that

enclosed by dotted lines is the Koshland–Nemethy–Filmer model. For the sake of simplicity,

the permutations of the ligand among the subunits and the free ligand are omitted.

For many enzymes, plots of the initial velocity versus the substrate concentration

are essentially identical in form with the binding isotherm. This suggests that the

binding steps prior to the rate-determining step are rapid and reversible and that the

turnover numbers (catalytic efficiency) for all of the binding sites are identical. If this

is the situation, the initial velocity, v, can readily be related to the binding isotherm:

v =
Vmr

n
(17-31)

where Vm is the maximum velocity of the enzyme reaction expressed as the product

of the molar concentration of enzyme and the turnover number. This simple analysis

seems to be sufficient for many cases, and if it is, the treatment of the rate data parallels

what was done for equilibrium binding, including the methods of plotting and fitting

the data. As might be expected, both positive and negative cooperativity are observed.

The interpretation of kinetic data can, however, be more complex. The turnover

numbers for different sites could be different. For example, in terms of the MWC

model, the R and T forms might have different catalytic activities although usually

the assumption is made that only the R form is enzymatically active. For the KNF

model, each of the ligand binding sites might have a different catalytic activity. In

fact, these complications are rarely included, or justified, in the data analysis. Finally,

it should be noted that apparent cooperativity in the rate of an enzymatic reaction

can arise purely from special kinetic situations and may have nothing to do with

cooperative binding of substrate. A few such situations have been well documented,
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but we will not consider such complications further. This is just a reminder that kinetic

measurements are not a substitute for equilibrium binding studies. They may provide

similar information in some cases, but they are inherently more difficult to interpret.

Of course, conversely, kinetic studies can provide dynamic information that cannot

be obtained from equilibrium measurements.

17.10 ALLOSTERISM

Thus far, we have considered only cases where a single ligand binds to a macro-

molecule, and important biological control can occur through cooperative interactions

for a single ligand. These are homotropic interactions. However, in many instances

regulation occurs through the binding of a second ligand that influences the binding

of the first ligand. These are called heterotropic interactions. Regulatory control by

reaction of a second ligand is termed allosterism, and the second binding site is called

an allosteric site. Two specific examples will be discussed to illustrate the principles

involved: hemoglobin and aspartate transcarbamoylase.

The association of oxygen with hemoglobin is strongly pH dependent as shown

in Figure 17-14. Note that the oxygenation isotherm becomes more sigmoidal as the

pH is lowered. Thus, the binding of protons to hemoglobin clearly affects oxygen

binding. In fact, the addition of protons decreases the amount of oxygen bound, and

vice versa. This reciprocal relationship is called the Bohr effect. The effect of proton

binding is typical allosteric regulation, in this case of oxygen binding. How is this

accommodated in the models we have discussed previously? For the MWC model,

allosteric effectors are assumed to bind selectively to the R or T conformation. An

inhibitor, I, such as the proton in the case under consideration, would bind selectively

to the T conformation. This shifts the equilibrium from the R to the T state, which

effectively changes the equilibrium constant L0 to

L′
0
= L0

(
1 + [I]

KI

)n

(17-32)

where KI is the intrinsic dissociation constant for the binding of inhibitor, and it

has been assumed that a single proton binds to each of the four subunits. Inser-

tion of this relationship into Eq. (17-29) can quantitatively account for the Bohr

effect. The KNF model can also explain the observations by assuming that binding of

the inhibitor alters the subunit interactions and conformational changes, effectively

altering the binding constants for oxygen as successive ligands are bound. Organic

phosphates are also strong effectors of oxygen binding and bind preferentially to

deoxyhemoglobin.

An activator, A, can enhance ligand binding by binding selectively to the R con-

formation. This effectively changes the equilibrium constant L0 to

L′
0
=

L0(
1 + [A] ∕KA

)n (17-33)

where KA is the intrinsic dissociation constant for the binding of the activator.



17.10 ALLOSTERISM 409

P
er

ce
nt

 s
at

ur
at

io
n

pO2 (mmHg)

0 20 40 60 80 100 120 140
0

20

40

60 pH = 7.6

pH = 7.4
pH = 7.280

100

FIGURE 17-14. The effect of pH on the oxygenation of hemoglobin (the Bohr effect). The

percent of saturation by oxygen is plotted versus the pressure of O2. Adapted from R. E.

Benesch and R. Benesch, The mechanism of interaction of red cell organic phosphates with

hemoglobin, Adv. Protein Chem. 28, 211 (1974). Copyright 1974, with permission from Else-

vier.

Which of the models for allosterism best accommodates the known data for

hemoglobin? The nature of the conformational change occurring when oxygen binds

is known from structural studies of deoxy- and oxyhemoglobin. The hemoglobin

studied contains four polypeptide chains, two 𝛼 chains and two 𝛽 chains. The 𝛼 and

𝛽 chains are similar but not identical. When oxygen binds, salt bridges are broken

between the polypeptide chains, and all four chains rotate slightly to accommodate

the movement of iron into the plane of the heme. The iron moves only a few tenths

of an angstrom, and two of the polypeptides move about 7 Å closer (17). These

structural changes and the binding data fit quite well to the MWC model. However,

there is evidence that in addition to this major conformational change, sequential

conformational changes occur in the subunits. Therefore, it is likely the case that

both models are needed to accommodate the data, and multiple conformational

changes occur. The structure of hemoglobin and the proposed major concerted

conformational change are shown schematically in Figure 9-9.

As previously indicated, aspartate transcarbamoylase is a key enzyme in the path-

way for pyrimidine biosynthesis. It is subject to inhibition by CTP and to activation

by ATP. The allosteric binding of CTP makes the dependence of the rate on aspar-

tate concentration more sigmoidal, whereas binding of the activator, ATP, makes the

curve less sigmoidal (18). This is a prototype for feedback inhibition in metabolism

and is shown schematically in Figure 17-15. An additional wrinkle in the regulatory

process is that the binding of both CTP and ATP to the enzyme displays negative

cooperativity, and these two ligands compete for the same binding site. The effect
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FIGURE 17-15. Schematic representation of the dependence of the initial velocity of the reac-

tion catalyzed by aspartate transcarbamoylase on the concentration of aspartate, a substrate.

The effects of an allosteric inhibitor, CTP, and an allosteric activator, ATP, are shown.

of ATP and CTP on the binding of aspartate can readily be accommodated by the

MWC model with the assumption that CTP binds selectively to the T conformation

and ATP to the R conformation. This assumes that aspartate binds selectively to the R

conformation. This model, however, cannot accommodate the negative cooperativity

observed in the binding of CTP and ATP. The KNF model can also accommodate

these results through alterations in the interactions between subunits.

The structure of aspartate transcarbamoylase is known. It consists of two trimers

of catalytic sites, with three dimers of regulatory sites at the interface of the trimers

(19). A threefold rotational axis is present, and it has been shown that conversion

of the putative R to T form involves rotation around this axis and alteration of

the interactions between the regulatory and catalytic subunits. The MWC model

accommodates much of the data, but the data also require sequential conformational

changes in the subunits. Thus, the conclusion is similar to that for hemoglobin.

A major conformational change consistent with R and T conformations appears

to occur, but additional conformational changes more localized and sequential in

nature also occur. The regulatory process, therefore, seems to require multiple

conformations and the interplay between global and local conformational changes.

The use of multiple conformational changes enhances the versatility and sensitivity

of the regulatory process. The structure of aspartate transcarbamoylase and the

nature of the concerted conformational change are shown in Figure 17-16. The top

of the figure is the T state with the catalytic trimers in blue and white at the top and

bottom of the structure. Two of the regulatory dimers are at the sides of the structure

in yellow. The third dimer is at the back of the structure. The bottom structure is the

R state. The movement of the subunits with respect to each other can be clearly seen.
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R

FIGURE 17-16. Ca backbone structures of the R (lower) and T (upper) states of aspartate

transcarbamoylase. The two catalytic trimers are in green and are closer together in the T state.

The three regulatory dimers (equatorial) are in yellow. One of the regulatory dimers is behind

the large central cavity in this view. Adapted from W. N. Lipscomb, Adv. Enzymol. 68, 67

(1994). Copyright 1994 John Wiley & Sons, Inc. Reprinted by permission of John Wiley &

Sons, Inc.

This concludes our discussion of ligand binding in biology. We have developed

the theoretical and experimental frameworks and have provided several examples of

applications to biological systems. This, and further reading of the literature, should

permit the interested reader to develop specific applications as needed.
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PROBLEMS

17-1. The following data were obtained for the binding of ADP to an ATPase.

How many binding sites are present per mole of enzyme and what is the intrinsic

binding constant? The concentration in the table is unbound ADP. (Nonspecific

binding occurs, which is not uncommon. You will have to decide how to handle

this problem.)

R [ADP] (μM)

0.500 0.719

0.694 1.23

1.06 2.36

1.22 3.30

1.32 4.55

1.63 8.81

1.69 16.32

1.91 27.15

2.21 40.62

2.15 79.75

2.40 115.5
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17-2. Some typical equilibrium dialysis data for the binding of a ligand to a macro-

molecule are given below. The total concentration of the macromolecule is

0.500 μM.

Determine the number of binding sites on the macromolecule and the intrinsic

binding constant.

Total ligand concentration (μM)

Side without macromolecule Side with macromolecule

0.158 0.436

0.395 0.960

0.890 1.83

2.37 3.78

4.00 5.60

6.18 7.91

8.12 9.90

17-3. The following initial velocities, v, were measured for the carbamylation of

aspartic acid by carbamoyl phosphate as catalyzed by the enzyme aspartate

transcarbamoylase. The concentration of carbamoyl phosphate was 1 mM and

the concentration of aspartate was varied.

v (arbitrary units) Aspartate (mM)

0.90 2.0

1.60 3.0

2.25 4.0

3.20 5.0

3.65 6.0

4.70 8.0

5.05 10.0

5.25 12.0

5.80 15.0

6.00 17.0

6.05 20.0

a. Assume that the initial velocity is related to r by Eq. (17-31) and construct

a Hill plot of the data. The slope provides a lower bound to the number of

aspartate binding sites.
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b. In fact, six aspartate binding sites are present per mole of protein. Using this

information and the data, make a table of r and the corresponding aspartate

concentration. Make a plot of r/[aspartate] versus r.

c. What type of cooperativity is occurring? Which of the two limiting models

discussed (MWC and KNF) is consistent with the data?

17-4. Consider a macromolecule that has two different conformations, M and M′.
The two conformations bind a single ligand, L, per molecule, but the binding

equilibrium is different for each conformation. This can be represented as

L + M M′ + L

ML M′L

K1

K2
K4

K3

where Ki are the equilibrium constants for the individual reactions. Calculate

the binding isotherm, r, for this macromolecule in terms of the equilibrium con-

stants and the concentration of the unbound ligand. What type of cooperativity,

if any, is displayed by this system? How many of the individual equilibrium

constants can be determined from the binding isotherm? What relationship, if

any, exists between the four constants?



CHAPTER 18

Hydrodynamics of Macromolecules

18.1 INTRODUCTION

Hydrodynamics is the science of the movement and interactions of particles in fluids,

both in the absence and in the presence of external forces such as centrifugal fields

(centrifugation) and electrical fields (electrophoresis). Hydrodynamic measurements

are used frequently to characterize the behavior of macromolecules in solution and

can provide important molecular information. In this chapter, we consider some of

the fundamental aspects of hydrodynamics in relatively simple terms and analyze

some of the methods used to obtain molecular information about macromolecules.

The mathematical details are not presented: more detailed discussions are available

(cf. Refs. 1–4).

18.2 FRICTIONAL COEFFICIENT

If a molecule moves through a solution, it is subjected to a frictional drag because

of interactions with the solvent. If the movement is slow enough so as not to cause

turbulence, the frictional drag is directly proportional to the velocity of the molecule,

and the proportionality constant is called the frictional coefficient, f. The actual calcu-

lation of this frictional coefficient is quite complex, and we present only the results.

If the molecule is assumed to be a sphere of radius RS, the frictional coefficient is

f = 6𝜋𝜂RS (18-1)

where 𝜂 is the viscosity of the liquid. This relationship is for the translational frictional

coefficient. The frictional coefficient for rotational motion can also be calculated:

frot = 6𝜂V (18-2)

where V is the volume of the sphere, (4∕3)𝜋RS
3. Two immediate questions arise with

regard to these definitions, namely, what is the “volume,” and what if the macro-

molecule cannot be approximated as a sphere.
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Defining the volume turns out to be more difficult than might be imagined. What

can be measured precisely is the partial specific volume of the solute, V2. In thermo-

dynamic terms, the partial specific volume of a solute is the change in solution volume

when a small increment of solute is added to the solution, extrapolated to infinite

dilution. (Partial molar quantities are discussed in Chapter 4.) In practice, the vol-

ume of the solution, Vtotal, is determined as a function of the weight concentration of

the solute, g. At a given constant weight, temperature, and pressure, V2 = dVtotal∕dg,

and the observed value of V2 at various values of g is extrapolated to zero concentra-

tion to eliminate the effect of interactions between macromolecules. In practice, V2

is rarely measured directly because of the large amount of solute required. Instead,

it is estimated from the amino acid composition of the protein. The partial specific

volumes of the amino acids have been carefully measured so that the partial specific

volume of the protein can be calculated by summing the partial specific volumes of

the amino acids on a weight basis. For proteins, V2 ranges from 0.69 to 0.76 cm3/g,

and a value of 0.73 cm3/g is used in the absence of amino acid data. Nucleic acids are

more dense, and the value of V2 is more sensitive to temperature and solvent, particu-

larly the specific counterion, because the strong electrostatic interactions between the

polyphosphate chain and metals alter the hydration of the macromolecule. A value of

about 0.5 cm3/g is obtained if the counterion is Na+.

Since V2 is calculated on a weight basis, the observed volume of the molecule

is (M∕N0)V2, where M is the molecular weight and N0 is Avogadro’s number. This

determination, however, does not take into account the hydration sphere associated

with the molecule. The hydration of the macromolecule can be included by adding the

volume of hydration 𝛿V1, where 𝛿 can be estimated by experimental measurements

not considered here and V1 is the specific volume of the solvent. Thus, the hydrated

volume of the molecule, Vh, is

Vh =
(

M
N0

)
(V2 + 𝛿V1) (18-3)

This should be regarded as an empirical estimate of the hydrated volume. The first

term is often considered the anhydrous volume of the macromolecule and the sec-

ond term the water of hydration. However, this is an oversimplification: V2 is also

dependent on the solvent. As further validation of this approximate model, the thick-

ness of the water layer around the macromolecule can be calculated to be about one

layer. Because of the uncertainty in the extent of hydration of a macromolecule and

its dependence on the details of the molecular surfaces, the hydrodynamic radius is

sometimes calculated from V2, that is, not explicitly including hydration. This radius

is often called the hydrodynamic or Stokes’ radius. George Stokes (1819–1903) was

one of the pioneers in the field of hydrodynamics, and Eq. (18-1) is often called

Stokes’ law.

Most macromolecules are not spheres: this is obvious for nucleic acids and even in

the case of proteins a better representation would be some type of irregularly shaped

rigid body. Nevertheless, a sphere is the most common shape analyzed because of the

relative simplicity of the mathematics. In fact, even when molecules are known to be
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a

FIGURE 18-1. The most common hydrodynamic shapes used as models for molecules:

the sphere and oblate and prolate ellipsoids. The cross sections are shown to illustrate the

shapes. The a and b axes are defined as the length and width of the entire ellipsoid. Adapted

from Ref. 1.

nonspherical, an “apparent” Stokes’ radius is often calculated with Eq. (18-1). Two

other shapes have been analyzed in detail, prolate and oblate ellipsoids of revolution.

These shapes are shown in Figure 18-1, along with a sphere. A prolate ellipsoid is

cigar shaped and is generated by rotation about its long axis. The two parameters

characterizing it are the long axis, a, and the short axis, b. Obviously for a sphere, a
= b. An oblate ellipsoid is generated by rotation around its short axis, b, and resem-

bles a disk in shape. As might be guessed, these ellipsoids of revolution have larger

translational frictional coefficients than spheres.

Tables of the ratio of the frictional coefficient of the ellipse to that of a sphere

are available as a function of the axial ratio, a/b (prolate ellipsoids) or b/a (oblate

ellipsoids). An abbreviated compilation is given in Table 18-1. This frictional coef-

ficient ratio, f∕fsphere, varies from 1 to 6 for a prolate ellipsoid and from 1 to 4 for

an oblate ellipsoid when the axial ratio goes from 1 to 200. As will be discussed

later, hydrodynamic measurements can be used to infer information about the shape

of macromolecules.

Rotational frictional coefficients are more complex because rotation can occur

around either the long or short axis of an ellipsoid, so that two frictional coefficients

are needed for each ellipsoid. This case will not be dealt with further except to note

the following. For oblate ellipsoids, the rotational friction coefficient is similar about

both axes and larger than that of the sphere. For prolate ellipsoids, the two friction

coefficients are quite different, with rotation around the long axis having a smaller

friction coefficient than the equivalent sphere and rotation around the short axis hav-

ing a larger friction coefficient. This is qualitatively what might be expected.

Frictional coefficients for more complex shapes have been calculated but are not

considered here.
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TABLE 18-1. Frictional Coefficient Ratios and Intrinsic Viscosity Shape Factors for

Ellipsoids of Revolution

Prolate Oblate

Axial ratio 𝜈 f∕fsphere 𝜈 f∕fsphere

1 2.500 1.000 2.500 1.000

5 5.806 1.250 4.708 1.224

10 13.634 1.543 8.043 1.458

20 38.53 1.996 14.80 1.782

50 176.81 2.946 35.16 2.375

100 593.7 4.067 69.10 2.974

200 2052.9 5.708 137.01 3.735

Data from Ref. 1 and H. A. Scheraga, Protein Structure, Academic Press, New York, 1961.

18.3 DIFFUSION

The motion of molecules in solution in the absence of external forces is due to dif-

fusion. In a solution at equilibrium, the motion of molecules is random and caused

by thermal energy: as the temperature goes up, the speed of the molecules increases.

Diffusion cannot be easily observed in solutions at equilibrium: sophisticated light

scattering techniques are required. The diffusion of macromolecules can be studied

more directly by creating a boundary between a buffer and a solution of the macro-

molecule. As time passes, the boundary spreads due to diffusion. The movement of

molecules with time is governed by Fick’s laws. The first law states that when a con-

centration gradient exists, dc∕dx, the number of molecules, n, passing through an

area, A, per unit time, dn∕dt, is proportional to the concentration gradient, with the

proportionality constant defining the diffusion constant, D. This can be written in one

dimension, x, as
dn
dt

= −DA
(

dc
dx

)
(18-4)

Strictly speaking, these should be partial derivatives, that is, the derivative with

respect to time assumes that x is constant and the derivative with respect to x assumes

that the time is constant. The minus sign arises because the flow of molecules is

opposite in sign to the concentration gradient, and D is defined as a positive number.

From dimensional analysis, D can be seen to have the dimensions of cm2/s.

Fick’s first law is easy to understand on an intuitive basis. It states that the net rate

of flow of molecules is proportional to the concentration gradient, dc∕dx: the larger

the concentration gradient, the faster the flow. If there is no concentration gradient

(dc∕dx = 0), no net flow occurs. Fick’s second law is not as apparent. It is based on

the first law and the conservation of mass and relates the time dependence of the

concentration to the concentration gradient. Often it is more convenient to measure

the concentration rather than the flux (dn∕dt). Fick’s second law in one dimension

can be written as
dc
dt

= D

(
d2c
dx2

)
(18-5)
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FIGURE 18-2. The progress of a diffusion experiment that begins with a sharp boundary. The

concentration is shown at three different times on the left and the concentration gradient on the

right. Reprinted with permission from C. Tanford, Physical Chemistry of Macromolecules,
Wiley, New York, 1961, p. 354.

Here again, the derivative on the left is carried out with x held constant and that on

the right with t held constant.

For the boundary spreading experiments in which diffusion is studied, the con-

centration of the macromolecule as it spreads can be detected by various optical

techniques. A schematic depiction of the boundary spreading is shown in Figure 18-2.

An analysis of the boundary spreading as a function of time according to Fick’s laws

permits the determination of the diffusion constant.

On the surface, this appears to be an easy experimental measurement, but in actu-

ality it is quite difficult. Ideally, an infinitely sharp boundary is set up at time zero, and

boundary spreading is measured as a function of time in the absence of forces other

than the concentration gradient. Diffusion is slow for macromolecules so that the

experiments take a long time, typically days. During the experiment, the equipment

must be mechanically stable to prevent distortion of the boundary, and the tempera-

ture must be very carefully controlled to prevent thermal gradients. In addition, the net

charge of the macromolecule must be kept as close to neutrality as possible to min-

imize electrostatic gradients. In practice, most modern day studies of diffusion are

done in an analytical centrifuge with a synthetic boundary cell in which the boundary

is created by layering buffer on the top of the solution. At low centrifuge speeds, little

movement of the molecules occurs due to centrifugal force. Some typical diffusion

constants for macromolecules are given in Table 18-2.

Complex hydrodynamic calculations show that the diffusion constant, D, can be

written as

D =
kBT

f
(18-6)

where kB is Boltzmann’s constant, T is the temperature, and f is the translational

frictional coefficient. Thus, the frictional coefficient can be directly calculated from
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TABLE 18-2. Selected Diffusion Constants in Water at 293 K

Sample Molecular weight D × 107 (cm2/s) V2 (cm3∕g) f∕fsphere

Sucrose 342 45.9 – –

Ribonuclease 13,683 11.9 0.728 1.14

Lysozyme 14,100 10.4 0.688 1.32

Bovine serum albumin 66,500 6.1 0.734 1.31

Hemoglobin 68,000 6.9 0.749 1.14

Tropomyosin 93,000 2.2 0.71 3.22

Myosin 493,000 1.10 0.728 3.65

Collagen 345,000 0.69 0.695 6.8

DNA 6,000,000 0.13 0.53 15

Tobacco mosaic virus 40 x 106 0.44 0.73 2.19

Data from Refs. 1 and 2.

the diffusion constant. If the molecule is assumed to be a sphere, f is given by Eq.

(18-1), and Eq. 18-6 can be written as

D =
kBT

6𝜋𝜂RS

(18-7)

The radius, RS, can be related to the partial specific volume, V2, by the equation

RS =

[
3MV2

4𝜋N0

]1∕3

(18-8)

and

D =
(

kBT

6𝜋𝜂

)(
4𝜋N0

3MV2

)1∕3

(18-9)

The calculated diffusion constant for a given molecular weight will differ from the

experimentally determined diffusion constant if the macromolecule is not spherical in

shape. This is usually summarized by the ratio f∕fsphere, where f is the experimentally

determined frictional coefficient and fsphere is the calculated frictional coefficient for

a sphere with a given molecular weight and partial specific volume (Eq. (18-8)). This

ratio is included in Table 18-2. This ratio reflects both the shape and the hydration of

the molecule. Typically, the effect of hydration is much less than the effect of shape.

As expected, the ratio is near 1 for globular proteins (the first four entries for pro-

teins), but deviates considerably for collagen, tropomyosin, and myosin (molecules

known to be elongated) and DNA. These molecules are more accurately described

as prolate ellipsoids rather than as spheres. An “apparent” radius can be calculated

directly from Eqs. (18-1) and (18-7). If the molecule is not spherical, the apparent

radius will be greater than the radius calculated from Eq. (18-8). Thus, the measure-

ment of diffusion constants can give direct information about the hydrodynamic shape

of a macromolecule.
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18.4 CENTRIFUGATION

The most common laboratory technique that directly measures the hydrodynamic

properties of molecules is centrifugation. Centrifugation involves generating a cen-

trifugal field by rapidly spinning a sample in a rotor. The separation of a solid precip-

itate from a solution requires relatively slow spinning of the rotor. In order to cause

macromolecules to move in a centrifugal field, very rapid spinning is required in a

special instrument called an ultracentrifuge. The centrifugal force on a particle of

mass m is m𝜔
2r, where 𝜔 is the angular velocity of the rotor in radians/s and r is

the distance of the particle from the center of the rotor. The outward motion of the

particle in the field will be partially opposed by the buoyancy of the molecule, that

is, the mass of the solvent displaced by the macromolecule as it moves through the

solution. The buoyant force is 𝜔2r times the mass of the displaced solution, which is

mV2𝜌, where 𝜌 is the density of the solvent. The net force on the particle, therefore,

is the difference between these two opposing factors, namely, 𝜔2rm(1 − V2𝜌). The

frictional force of the particles moving past each other with a relative velocity v is

fv. When a particle moves in a centrifugal field in a closed cell, the net force is zero

so that the centrifugal force on the particle is balanced by the frictional force and

buoyancy:

fv = 𝜔
2rm(1 − V2𝜌) (18-10)

and the velocity of the particle in the field is

v =
𝜔

2rm(1 − V2𝜌)
f

(18-11)

As expected, the more massive the particle, the more rapidly it sediments. Simi-

larly, the larger the frictional coefficient, the slower the particle sediments. Also, the

less dense the molecule and the more dense the solvent, the slower the particle sedi-

ments. In order to obtain a parameter independent of the speed of the centrifugation, it

is customary to determine the sedimentation coefficient, s, the velocity per unit field:

s = v
𝜔

2r
=

m(1 − V2𝜌)
f

(18-12)

The sedimentation coefficient has the dimensions of seconds and for typical macro-

molecules is in the range of 10−11–10−13 s. In order to eliminate the necessity of

writing these exponentials, the sedimentation coefficient is usually reported in terms

of the svedberg, S, with S =10−13 s. Theodor Svedberg (1884–1971) was the inventor

of the ultracentrifuge and was awarded the Nobel Prize for this accomplishment.

18.5 VELOCITY SEDIMENTATION

Before proceeding further with discussion of the sedimentation coefficient, the instru-

mentation used for analytical ultracentrifugation is worth discussing. The rotor spins
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at speeds greater than 50,000 revolutions per minute (rpm) [𝜔=2𝜋 rpm/60 radians/s],

with forces greater than 600,000 times the force of gravity being produced. The rotor,

therefore, must be mechanically stable and very carefully balanced. The cell hold-

ing the solution must be designed so that the optical properties of the solution can

be observed during the centrifugation, typically through ultraviolet absorption. The

design of the cell is shown in Figure 18-3. It consists of a centerpiece sandwiched

by two quartz or sapphire windows. The centerpiece has two wedge-shaped sectors

that are extensions of pie-shaped lines with the apex at the center of the rotor. With

the windows in place, two cells are defined: one is filled with the solution of interest

and the other with the solvent. The ultracentrifuge is equipped with an optical system

that measures the absorbance of light at a range of distances, r, from the center of

rotation. (Refractive index measurements also are possible.)

When the cell is spun, a boundary is formed between the fluid in each cell and an

air bubble, creating a meniscus in each cell. Initially, the concentration of the solute

is uniform throughout the fluid volume. As the centrifugation proceeds, a progres-

sive movement of the macromolecule away from the meniscus occurs, and a moving

boundary is formed between the solute and the trailing solvent. The net result is that

the macromolecule moves to the rear of the cell. A typical plot of the concentration

of the macromolecule versus the distance from the center of the rotor is shown in

Figure 18-4. Note that the sample becomes diluted as the centrifugation proceeds

because the cell is wider at the bottom (radial dilution). The boundary stays sharp

as long as significant diffusion does not occur during the duration of the experiment,

typically a few hours. If significant broadening of the boundary occurs during the

Cell bottom

Meniscus

Axis of rotation

r

Solution

Solution-
solvent boundary

FIGURE 18-3. Schematic representation of the ultracentrifuge sample holder. The drawing

on the left is a two-sector holder. One sector is used for the sample and the other for the buffer

as an optical blank. Sample holders with more than two sectors are also used. The drawing on

the right is a blowup of the sample sector only. The axis of rotation is shown to indicate that

the sectors are designed as pie slices, with the axis of rotation at the center of the pie.
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FIGURE 18-4. Boundary movement in a sedimentation velocity experiment. The absorbance

is plotted versus r, the distance from the axis of rotation. The boundary moves to the bottom of

the centrifuge cell as the centrifugation proceeds with a loss of sharpness due to diffusion. The

meniscus at the top of the cell is at the position r0. The concentration decreases because the

sector volume increases from the top of the cell to the bottom. The MoaC protein (s =5.21 S)

was centrifuged at 50,000 rpm and 20∘C and the absorbance was scanned at 20 min intervals

at 230 nm. Figure courtesy of Dr. Harvey Sage.

experiment, the diffusion constant can be calculated by analyzing the shape of the

boundary as a function of time. Because diffusion is relatively slow for large macro-

molecules, diffusion constants are usually measured independently over a longer time

period as previously discussed.

The sedimentation coefficient can be calculated from a plot of the position of

the center of the boundary versus time. In practice, sedimentation coefficients are

normally tabulated at a standard temperature of 20∘C in water. If the sedimentation

is measured at a different temperature, T, and solvent, the assumption is made that

the only correction needed is to the frictional coefficient and specific volume of the

macromolecule (Eq. (18-12)). If the frictional coefficient is assumed to depend only

on the viscosity (Eq. (18-1)):

s20,w = sT

(
𝜂T

𝜂20,w

) (1 − V2𝜌)20,w

(1 − V2𝜌)T
(18-13)

To make this conversion, the density and viscosity of the solvent used for the sedi-

mentation experiment must be known, and the implicit assumption is that the shape

and solvation of the macromolecule are the same in water and the solvent. In addi-

tion, the sedimentation coefficient is sometimes concentration dependent because of

interactions between the macromolecules. In this case, the experimental sedimenta-

tion constant is extrapolated to zero concentration to obtain the value of s20,w. From
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TABLE 18-3. Selected Protein Sedimentation Coefficients in Water at 293 K

Sample Molecular weight s (S) V2 (cm3∕g) f∕fsphere

Ribonuclease A 12,400 1.85 0.728 1.29

Lysozyme 14,100 1.91 0.688 1.22

Bovine serum albumin 66,500 4.31 0.734 1.33

Hemoglobin 68,000 4.31 0.749 1.28

Tropomyosin 93,000 2.6 0.71 2.65

Myosin 570,000 6.43 0.728 3.63

Tobacco mosaic virus 40 × 106 192 0.73 2.65

Data from Ref. 1.

Eq. (18-12), it is apparent that if the molecular weight of the species is known, the

frictional coefficient can be calculated. As with diffusion, this provides information

about the shape of the macromolecule. Sedimentation coefficients for some typical

proteins are presented in Table 18-3, along with the ratio of the frictional coefficients,

f∕fsphere, calculated from the sedimentation coefficients and diffusion constant.

The molecular weight of the macromolecule can be calculated from sedimentation

velocity experiments if both the diffusion constant and the sedimentation coefficient

have been measured. Equations (18-6) and (18-12) can be combined to eliminate the

frictional coefficient. The result is

M = RTs

D(1 − V2𝜌)
(18-14)

(Note that m = M/N0 and R = N0kB.)

18.6 EQUILIBRIUM CENTRIFUGATION

The best method for determining molecular weights with ultracentrifugation is by

equilibrium centrifugation. These measurements provide direct determination of the

absolute molecular weight. As the macromolecule sediments in the centrifuge, a con-

centration gradient is created in the solution as the macromolecule accumulates at the

back of the cell. This will cause the macromolecule to diffuse back in the direction

where the concentration is depleted. Thus, diffusion causes the molecule to move

to the top of the cell, and centrifugation causes it to move to the bottom of the cell.

Eventually, these two opposing factors will balance, and a stable concentration distri-

bution will be established within the cell. Typically, this takes many hours, even days,

to occur. The final equilibrium distribution, however, has nothing to do with the shape

of the macromolecule. Since the system is at equilibrium, all that matters is the energy

of the macromolecule in the centrifugal field. From our previous considerations, it is

apparent that the force acting on the macromolecule is (M∕N0)(1 − V2𝜌)𝜔2r, where r
is the distance from the center of rotation. The energy is the negative of the integral of
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the force times dr. Thus, the energy per mole, E, at a given position in the centrifugal

field is

E = −
M(1 − V2𝜌)𝜔2r2

2
(18-15)

The concentration distribution can be calculated from the Boltzmann equation that

prescribes the probability distribution of the concentration as a function of energy,

namely, for two concentrations c1 and c2 with energies E1 and E2, respectively,

c2

c1

= exp

[(
E1 − E2

)
RT

]
(18-16)

Substituting Eq. (18-16) into Eq. (18-15), we obtain

ln

(
c2

c1

)
=

M(1 − V2𝜌)𝜔2(r2
2
− r2

1
)

2RT
(18-17)

This result predicts that a plot of ln c versus r2 is a straight line and that the slope of this

line permits the absolute molecular weight of the macromolecule to be determined.

From Eq. (18-17), the molecular weight is

M = 2RT

(1 − V2𝜌)𝜔2
(slope of ln c versus r2) (18-18)

A typical plot of ln c vs r2 is shown in Figure 18-5 for bovine serum albumin.

Analytical centrifugation is one of the primary tools for determining the molec-

ular weight of a macromolecule. It is particularly important if the protein contains

multiple subunits or if a complex between nucleic acids and proteins occurs. Ultra-

centrifugation provides a means of determining the molecular weight of the complex

formed. In addition, if multiple species are in equilibrium, for example, with con-

centrations of both complexed and uncomplexed species present, information can be

obtained about the equilibria involved.

18.7 PREPARATIVE CENTRIFUGATION

Thus far, we have discussed ultracentrifugation as an analytical tool. However, it is

also useful as a preparative method. This use is based on the obvious fact that macro-

molecules of different molecular weights centrifuge at different rates, as in velocity

sedimentation. In principle, one might envisage simply centrifuging a mixture of

macromolecules in a centrifuge tube and then punching a hole at the bottom of the

centrifuge tube to elute the solution from the tube, with different molecular weight

macromolecules eluting at different places in the elution pattern. This is the general

idea of preparative or zonal centrifugation, but effective separation is not usually pos-

sible in a homogeneous solution because of gravitational instability. If a mixture of
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FIGURE 18-5. Sedimentation equilibrium data for bovine serum albumin in 0.1 M NaCl at

27,960 rpm, 20∘C. The initial protein concentration was 650 μg/ml. The natural logarithm

of the concentration is plotted versus the square of the distance from the axis of rotation

(Eq. (18-17)). Reprinted from D. Freifelder, Physical Biochemistry: Applications to Biochem-
istry and Molecular Biology, 2nd edition, W.H Freeman, New York, 1982, p. 421. © 1976,

1982 by Freeman. Used with permission.

macromolecules is layered onto the top of a centrifuge tube, the density of the sam-

ple is higher in the layered band than in the solution below it, and the band would

collapse. In zonal centrifugation, this problem is circumvented by creating a density

gradient in the centrifuge tube before layering the sample onto the solution. This can

be done with materials such as salt, sucrose, and glycerol. The density is highest at

the bottom of the centrifuge tube. Particles will sediment through the gradient with

a gradually decreasing velocity, each moving with an overall speed proportional to

its s value. Thus, if the centrifugation is stopped before they reach the bottom of the

tube, a separation of the macromolecules will occur, and the separate molecules can

be isolated by collecting the contents of the centrifuge tube in fractions. If internal

standards with known s values are included in the mixture of macromolecules, the

values of the sedimentation coefficients for the individual macromolecules can be

estimated.
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FIGURE 18-6. Schematic representation of zonal centrifugation of a mixture of three pro-

teins. The proteins separate according to their s values as the centrifugation proceeds. In a real

experiment, the area under the curves would remain constant.

The time course of zonal centrifugation for a mixture of three macromolecules

is shown schematically in Figure 18-6. The separation of components depends on

the molecular weights, the partial specific volumes of the macromolecules, and their

shape.

18.8 DENSITY CENTRIFUGATION

Density centrifugation is related to zonal centrifugation and is also an effective

preparative method. The best known example of this is the separation of nucleic

acids by CsCl gradient centrifugation. Rather than creating a preformed gradient

in a centrifuge tube, a CsCl solution is centrifuged until a CsCl gradient is formed.

This is because small molecules will tend to distribute in the tube just as large

molecules, and this creates an effective gradient if the solution is reasonably dense

(a saturated solution of CsCl has a density of 1.9 g/cm3). CsCl is commonly used

because the solution density increases considerably as the concentration of CsCl is

increased. However, other materials can work equally well, as long as a broad range

of densities can be achieved. If a macromolecule is included in the solution, it will

tend to form a tight band at a solvent density the same as its own, thus providing an

effective method of separation because of the difference in buoyant density of the

macromolecules. This has proved especially effective for the separation of different

DNA molecules.
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The most famous experiment done with density centrifugation was the original

demonstration that DNA replicates by making a new complementary strand for each

original strand in the parent DNA. This was done by growing bacteria with DNA

having 14N at all positions in media containing 15N. In the original double-stranded

DNA, each strand contained 14N. In the first generation, the double-stranded DNA

had one strand with 14N and one strand with 15N. This could be easily seen with

density gradient centrifugation as the 14N:15N DNA moved further from the center of

rotation than the 14N:14N DNA because it is heavier. In the second generation, some
15N:15N DNA forms which moves even further down the centrifuge tube. This result,

of course, is one of the basic tenets of modern molecular biology.

18.9 VISCOSITY

Viscosity plays a central role in hydrodynamics, as seen, for example, in the defini-

tion of the frictional coefficient. However, it is rarely used to determine the molecular

properties of macromolecules because it provides limited information, and better

tools are available. The measurement of viscosity is relatively easy. With a simple

viscometer (e.g., Ostwald viscometer), the time, t, required for a defined volume of

liquid to flow through a capillary is measured, and the flow time for an unknown liquid

is compared with that of a liquid whose viscosity is known. The relative viscosities

are related through the equation

𝜂u

𝜂k

=
𝜌utk
𝜌ktu

(18-19)

where 𝜌 is the density and the subscripts k and u are the known and unknown liquids,

respectively. The most common unit used for the viscosity coefficient is the poise

[g/(cm s)] or centipoise (10−2 poise). The SI units are kg/(m s) = Ps, where P is the

pascal.

The viscosity of a solution of macromolecules is strongly dependent on the con-

centration of the macromolecule. For a given concentration, the specific viscosity,

𝜂sp, is defined as

𝜂sp = (𝜂′ − 𝜂)
𝜂

(18-20)

where 𝜂
′ is the viscosity of the solution and 𝜂 is the viscosity of the solvent. Finally,

to obtain a viscosity that is intrinsic to the macromolecule and independent of the

concentration of the macromolecule, c, the intrinsic viscosity, [𝜂], is defined as the

value of 𝜂sp/c extrapolated to zero concentration. Note that the intrinsic viscosity has

the units of reciprocal concentration as the specific viscosity is dimensionless. This is

usually taken as cm3/g. The intrinsic viscosities of a few selected proteins are given in

Table 18-4, along with the frictional coefficient ratio f∕fsphere determined by diffusion

constant measurements.
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TABLE 18-4. Intrinsic Viscosities of Proteins in Aqueous Salt (20–25∘C)

Sample Molecular weight [𝜂] (cm3/g) f∕fsphere
a

Ribonuclease 13,683 3.30 1.14

Bovine serum albumin 65,000 3.7 1.31

Hemoglobin 68,000 3.6 1.14

Tropomyosin 93,000 52 3.22

Myosin 493,000 217 3.65

Collagen 345,000 1150 6.8

Data from Ref. 2.
aFrom diffusion constant measurements (Table 18-2).

The intrinsic viscosity can be related to the shape of the macromolecule through

the relationship

[𝜂] = 𝜈(V2 + 𝛿V1) (18-21)

In this equation, 𝜈 is a dimensionless factor that is dependent only on the shape of the

macromolecule. For a sphere, 𝜈 is 2.5, and it is substantially larger for nonspherical

shapes. Values of 𝜈 are included in Table 18-1. From Eq. (18-21), it can be seen that

the intrinsic viscosity is a measure of the shape and/or volume of a macromolecule.

Thus, measurements of the intrinsic viscosity can be used to monitor processes such

as the assembly of multimolecular species or large shape changes such as protein

denaturation.

Viscosity measurements, for example, can be used to show that the activity of

DNA polymerase increases the length of DNA. When the first polymerases were iso-

lated, the activity of the enzyme was demonstrated by the incorporation of radioactive

nucleotides into DNA. However, this could be due to synthesis of new DNA or due

to exchange reactions with existing DNA. The viscosity of DNA as it grows longer

increases significantly so that viscosity measurements demonstrated that new DNA

was being made.

18.10 ELECTROPHORESIS

Biological macromolecules are usually charged so that if an electric field is applied

across a solution, the molecules will move in the field. Positively charged molecules

will move to the cathode (negative electrode) and negatively charged molecules to

the anode (positive electrode). The fundamental relationship for the movement of a

molecule in a nonconducting solvent is

u = ZeE
f

(18-22)

where u is the velocity of the molecule, Z is the ionic charge number of the molecule,

e is the charge of an electron, E is the electric field, and f is the frictional coefficient.
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(If mks units are used, u is in m/s, Z is dimensionless, e is in coulombs, E is in

volts/m, and f is in kg/s.) In principle, this relationship can be used to determine the

charge of a molecule, as was done for determining the charge of an electron; however,

biological macromolecules are in water solutions with other ions that influence the

ionic atmosphere around the macromolecule. This makes it virtually impossible to

obtain quantitative information about macromolecules with electrophoretic methods.

However, electrophoresis is a valuable analytical tool, and some of its applications

will be briefly described.

The first major application of electrophoresis was the separation of the protein

components in blood through electrophoresis in aqueous solutions. This ground-

breaking experiment demonstrated that blood contained many different proteins

that could be separated and purified. Most current applications, however, utilize

electrophoresis in gels. The gel is a polymer dispersed in aqueous solution that forms

a three-dimensional network. Typical examples are agarose gels, a polysaccharide

from agar in water, and polyacrylamide gels. Most of the gel is water, typically 90%,

but the three-dimensional network of the polymer constricts the flow of molecules

significantly. Furthermore, in some cases the macromolecules may be too large

to enter the network. The extent to which flow is inhibited can be controlled by

the degree of cross-linking of the gel. If a macromolecule is put into a gel and an

electric field applied, the macromolecule will migrate in the gel. Exactly how far the

macromolecule migrates is determined by the hydrodynamics of the macromolecule

(size and shape) and its charge (Eq. (18-22)).

DNA fingerprinting is an example of the analytical power of gel electrophoresis.

All humans have similar DNA, but the exact base sequences are very specific for

individuals. Much of human DNA does not code for proteins (>90%) and consists of

repeating sequences of bases. The number and nature of these sequences differ for

each individual, and such a region is used for DNA fingerprinting. These sequences

can be isolated, and restriction enzymes exist that cut double-stranded DNA at spe-

cific places determined by the nucleotides in the sequence. A large number of restric-

tion enzymes are readily available, and they can be used to cleave the fingerprinting

region of the DNA to obtain different fragmentation patterns. The fragments are then

separated by electrophoresis on agarose gels. The DNA separates on the gel accord-

ing to its size because every residue has the same charge due to the phosphate portion

of the DNA. The pattern of bands obtained with only a few restriction enzymes is

unique for each person (except identical twins) and therefore can be used to distin-

guish between people.

The actual detection of the gel band is accomplished by denaturing the DNA

on the gel, either with heat or chemically, and making radioactive DNA oligonu-

cleotides complementary to the individual gel bands. The gel bands are transferred

(“blotted”) to a nitrocellulose membrane, usually by simple capillary action. The

membrane is then soaked with the radioactive nucleotides. After washing, the radioac-

tivity of the blotted bands is measured. This is termed a Southern blot, after the person

who invented this technique, Edward M. Southern. The use of this analysis in crim-

inal cases is quite extensive. Not only can this method identify individuals with an

extremely high probability, but it can also identify related people. The probability
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of the analysis being correct depends on how many restriction maps are used—the

odds become overwhelmingly large with relatively few restriction enzyme maps. Two

other gel electrophoresis blotting methods are commonly used, one with radioactive

RNA oligonucleotides and the other with antibodies. These are called Northern and

Western blots, respectively—a scientific joke to those who know the origin of these

terms.

Nucleic acids have one charge per nucleotide so that separation of oligonu-

cleotides according to molecular weight is relatively easy with electrophoresis. The

situation is quite different for proteins as the number of charges varies between

individual proteins and with pH, salt concentration, etc. Furthermore, the shapes

of proteins also vary, so they may have quite different frictional coefficients.

Nevertheless, gel electrophoresis of native proteins may provide a convenient

separation method, even though the migration of the protein in the gel cannot be

quantitatively interpreted. Sodium dodecyl sulfate–polyacrylamide gel electrophore-

sis (SDS-PAGE) gets around this problem by the addition of SDS to the protein.

Proteins bind about the same amount of SDS per monomer. As SDS is highly

charged, the charge per unit mass of protein is about the same. Furthermore, if

disulfide bonds are broken by reduction with a reagent such as 2-mercaptoethanol,

the protein is denatured by SDS into a similar shape for all proteins. If SDS-PAGE

is carried out for reduced proteins reacted with SDS (typically about 10−3 M),

the extent of movement of the proteins is determined entirely by their molecular

weight. The protein is usually detected by staining the gel with a dye, for example,

Coomassie blue, after electrophoresis. Under controlled conditions, the intensity of

the stain can be related to the concentration in the gel.

The logarithm of the molecular weight is plotted versus the mobility of the protein

for a variety of proteins and gels in Figure 18-7. The straight line relationship is a

convenient method for determining the approximate molecular weight of a denatured

protein. This straight line can be represented by the equation

log M = A − Bx (18-23)

where M is the molecular weight, x is the distance the protein has migrated in the

gel, and A and B are constants determined empirically. In practice, a set of standard

proteins is included in the gel along with the protein of unknown molecular weight

in order to determine A and B. However, this is an empirical method and is not a

substitute for determining the exact molecular weight by a method such as equilib-

rium centrifugation. If the protein itself is highly charged, has an unusual shape when

denatured with SDS, or does not bind the “typical” amount of SDS, SDS-PAGE can

give misleading results.

These two examples illustrate the importance of gel electrophoresis as an analyti-

cal technique in modern biology. These methods are dependent on the hydrodynamic

properties of the macromolecules, even though these properties are used in an entirely

empirical way. More extensive discussions of electrophoresis are available elsewhere

(1,3).
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FIGURE 18-7. Electrophoretic mobilities of standard proteins in an SDS-PAGE experiment.

The numbers refer to the standard proteins used, and the lines are different acrylamide con-

centrations. The acrylamide concentrations are 15% (▴), 10% (•), 7.5% (○), and 5% (◽). As

expected, the higher the acrylamide concentration, the slower the migration. The standard pro-

teins are 𝛽-galactosidase, phosphorylase A, serum albumin, catalase, fumarase, aldolase, glyc-

eraldehyde phosphate dehydrogenase, carbonic anhydrase, trypsin, myoglobin, and lysozyme.

Reprinted from K. Weber, J. R. Pringle, and M. Osborn, Measurement of molecular weights

by electrophoresis on SDS–acrylamide gel, Methods Enzymol. 26, 3 (1972). Copyright 1972,

with permission from Elsevier.

18.11 PEPTIDE-INDUCED CONFORMATIONAL CHANGE OF A MAJOR
HISTOCOMPATIBILITY COMPLEX PROTEIN

Major histocompatibility complex proteins (MHC) are cell surface proteins that are

essential for the cell-mediated immune response. Class II MHC proteins bind pep-

tides that are produced by proteolysis and present them to the surface of the T cell,

thereby initiating an immune response (5). Complexes of these proteins with peptides

have been extensively studied by a variety of techniques, including X-ray crystal-

lography, thermodynamics, and kinetics. Here we briefly describe a hydrodynamic

investigation that demonstrated a major conformational change of an isolated MHC

protein induced by the binding of a peptide (6). In this work, a soluble portion of

a specific MHC protein, DR1, was cloned and expressed in E. coli. DR1 consists

of two different polypeptide chains that are tightly associated. The hydrodynamic

properties of the protein and the protein–peptide complex were then measured by
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TABLE 18-5. Hydrodynamic Data for DR1 and a DR1-Peptide Complex

DR1 DR1–peptide

Gel filtration molecular weight 48,000 40,000

s (S) 2.67 3.23

D (×10−7 cm2/s), light scattering 6.17 7.40

D (×10−7 cm2/s), sedimentation velocity 5.73 6.74

D (×10−7 cm2/s), calculated 7.68

f∕fsphere, light scattering 1.3 1.1

Rs (Å), light scattering 35 29

Rs (Å), sedimentation velocity 37.4 31.8

Rs (Å), calculated 27.9

D is the translational diffusion constant, s is the sedimentation constant, RS is Stokes’ radius, and f∕fsphere

is the ratio of frictional coefficients. The calculated values are based on the crystal structure of the

DR1-peptide complex and the estimated hydrated volume of the DR1–peptide. Data from Ref. 8.

a variety of techniques: gel filtration, light scattering, and ultracentrifugation. The

results obtained are summarized in Table 18-5 for DR1 and a DR1–peptide complex.

Gel filtration is an empirical method for determining molecular weight. Molecular

sieve gels have pores in the individual beads that allow proteins to enter if they are

small enough. The proteins partition between the inside and the outside of the beads.

In general, the larger proteins partition more favorably on the outside of the beads,

and the smaller proteins partition more favorably on the inside of the beads. A vari-

ety of gel materials are available with different pore sizes so that graded partitioning

between the inside and the outside is available for a wide range of molecular weights.

If proteins are passed through a gel filtration column in which all of the proteins can

be partitioned inside the gel beads to some extent, they will elute from the column

in the order of their molecular weight, with the highest molecular weight appear-

ing first. If the column is calibrated with proteins of known molecular weights, the

molecular weight of an unknown protein can be determined. Gel filtration, however,

must be used with caution for determining molecular weights, as the shape of the

macromolecule and its hydration are also important factors in determining the elu-

tion volume of a given protein. In fact, gel filtration separates proteins on the basis of

their effective hydrodynamic radius rather than simply by molecular weight.

The diffusion constant obtained from the sedimentation coefficient was calculated

by the use of Eq. (18-14), Stokes’ radius with Eq. (18-7), and the frictional coefficient

ratio as in Table 18-2. Table 18-5 includes a diffusion constant and a Stokes’ radius

calculated from the crystal structure of the DR1–peptide. This was done by calculat-

ing a radius based on the specific volume of the protein and the estimated water of

hydration. The radius obtained from this procedure was multiplied by the frictional

coefficient ratio for an oblate ellipsoid estimated from the crystal structure. In other

words, RS =
(

3Vh

4𝜋

)1∕3

(f∕fsphere), where Vh is the hydrated volume.

The results obtained from the three methods are similar: binding of the two pep-

tides causes an apparent decrease in the molecular weight and the Stokes’ radius,
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and an increase in the diffusion constant. This cannot be due to an actual change in

molecular weight as the peptide does not significantly change the molecular weight of

DR1. This was confirmed by sedimentation equilibrium experiments. The molecular

masses were found to be 45,000 and 47,000 for DR1 and DR1–peptide, respectively.

The most obvious way to explain these results is that the DR1–peptide complex has

a more compact shape than the DR1 protein alone. Circular dichroism measurements

suggested that structural changes occur when DR1 binds peptide. Thus, the evidence

is quite convincing that a significant conformational change occurs when the peptide

binds.

What is the biological significance of this conformational change? This is a matter

of speculation, but the argument is made that this conformational change is important

for presentation of the peptide to the T cell and perhaps for regulation of the immune

response.

18.12 ULTRACENTRIFUGE ANALYSIS OF PROTEIN–DNA
INTERACTIONS

Translin is a nucleic acid binding protein that appears to recognize sequences found at

chromosomal break points. Chromosomal breakage and rejoining is associated with

the development of malignancies (7). Consequently, the interaction of translin with

DNA is of considerable biological significance. Translin is a protein of 228 amino

acid residues and a molecular weight of 26,180 (calculated from the DNA sequence

of its gene).

However, it exists and functions as a multisubunit protein. Ultracentrifugation

analysis was carried out to determine its molecular weight and shape. In addition,

the binding of oligonucleotides to translin was also investigated (8).

Velocity sedimentation analysis revealed a major species with an s value of 8.5 S. A

broad distribution of a small amount of heavier material was present that is attributed

to larger aggregates. The major species was attributed to an octamer with a frictional

coefficient ratio of 1.35. In order to confirm the presence of an octamer and to exam-

ine more carefully the distribution of molecular species, equilibrium centrifugation

experiments were also carried out. The results confirmed the presence of an octamer,

along with a small amount of high molecular weight material. No evidence of lower

molecular weight species was found, suggesting that the octamer is a very stable

species. The shape of the octamer was derived from the frictional coefficient and

electron microscopy. The octamer can be approximated by an oblate ellipsoid with

an axial ratio of 7.5:1.

The interaction of translin with a 24-mer oligodeoxynucleotide was also studied.

The oligonucleotide was labeled with the fluorescent molecule fluorescein. With this

label, it was possible to observe both the free and unbound nucleotides by measuring

the absorbance at 490 nm. Data were also collected at 280 and 260 nm: as discussed

in Chapter 10, proteins have a maximum absorbance at 280 nm and nucleic acids

have a maximum absorbance at 260 nm. However, at these two wavelengths, both the

protein and the nucleic acid contribute to the absorbance. Equilibrium sedimentation
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experiments were carried out for several concentrations of DNA and translin, and

these data were simultaneously fit to a model in which the nucleic acid was assumed to

form a one-to-one complex with the octameric translin. The equilibrium dissociation

constant obtained was 84 nM. This is very tight binding, attesting to the specificity of

this interaction.

The overall model that emerges from this work (and electron microscopy) is that

translin forms an annular oblate ellipsoid structure of eight subunits that binds tightly

to DNA at chromosomal break points.

As is apparent from the aforementioned discussion, hydrodynamic considerations

form the basis of several important experimental methods used in modern biolog-

ical research. Moreover, determination of the hydrodynamic properties of macro-

molecules provides important information about their structure and shape which in

turn provides insight into their function.
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PROBLEMS

18-1. The value of s can usually be calculated by measuring the rate of change of

the midpoint of the boundary, x1/2, with respect to time (Fig 18-4). From Eq.

(18-12), s = v/(𝜔2x) = (dx/dt)/(𝜔2x) = (d ln x/dt)/𝜔2. Thus, the slope of a plot

of ln x versus time and the value of 𝜔 allow s to be determined. The following

data were obtained for a protein of molecular weight 74,000 with a specific

volume of 0.737 cm3/g at 20∘C. The density of the buffer is 1.010 g/cm3, the

viscosity is 1.002 centipoise [10−2 g/(cm s)], and the centrifugation was carried

out at 52,000 rpm.
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Time (min) x1/2 (cm)

0 5.8591

30 5.9541

60 6.0763

90 6.2010

120 6.3282

150 6.4581

180 6.5905

a. Calculate the sedimentation coefficient, s.

b. Calculate the frictional coefficient.

c. Calculate the diffusion constant.

d. Calculate the frictional coefficient ratio, f/fsphere.

18-2. High molecular weight DNA can be modeled as a prolate ellipsoid of revo-

lution. The frictional coefficient can be approximated as f =6𝜋𝜂a/[ln(2a/b)],

where 𝜂 is the viscosity of the solvent, a is the long axis of the ellipsoid, and

b is the short axis. DNA with a molecular weight of 1 million is about 5200 Å

long and 22 Å in diameter.

a. Calculate the diffusion constant and sedimentation coefficient in 0.1 M

NaCl for this DNA at 20∘C. The viscosity of the solvent at this temper-

ature is 1.016 centipoise, its density is 1.0025 g/cm3, and the specific

volume of DNA is 0.556 cm3/g.

b. The calculated values are only in fair agreement with experimental val-

ues. Provide a possible explanation for this discrepancy.

18-3. Equilibrium centrifugation is carried out on a protein at pH 7.0 and pH 10.5

at 20∘C. The partial specific volume of the protein is 0.749 cm3/g at this tem-

perature and the density of water is 0.9982 g/cm3. The following results were

obtained.

r2 (cm2) c (μM) pH 7.0, 30,000 rpm c (μM) pH 10.5, 40,000 rpm

49.00 0.431 0.333

49.10 0.611 0.388

49.20 0.865 0.453

49.30 1.22 0.529

49.40 1.72 0.616

49.50 2.44 0.720

49.60 3.46 0.840

49.70 4.89 0.980

49.80 6.91 1.14

49.90 9.78 1.33

50.00 14.2 1.55
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a. Calculate the molecular weight for the protein at the two pH values.

b. Provide an explanation for the different molecular weights obtained at

the two different pH values.

18-4. a. Ribonuclease is a small molecular weight protein consisting of a single

polypeptide chain. When it is thermally denatured, the relative viscosity

of the solution increases. What is a likely explanation for this obser-

vation in terms of the molecular structures of the native and denatured

states? What would you predict for the changes in the diffusion constant

and sedimentation coefficients accompanying denaturation?

b. In contrast, when double-stranded DNA is thermally denatured into

single-stranded DNA, the viscosity of the solution decreases. Explain

this observation in terms of the molecular structures of single- and

double-stranded DNA. If the melting temperature of the DNA is 30∘C,

sketch a plot of the intrinsic viscosity versus temperature. In addition,

what would you predict for the changes in diffusion and sedimentation

coefficients for the DNA. (Assume that the degree of polymerization of

the DNA is unchanged. DNA melting and the melting temperature are

discussed in Chapters 3 and 6.)

18-5. The ribosome from E. coli can be isolated as two particles, the 30S and 50S

subunits. (The nomenclature for ribosomes uses the sedimentation coefficients

determined in early experiments.) Both particles contain proteins and RNA.

The 30S subunit contains 16S RNA and proteins. A question that was asked

was whether the 16S RNA has the same configuration when it is isolated as

when it is in the 30S subunit. One approach to this question is to determine

the effective hydrodynamic radii of the isolated 16S RNA and the 30S subunit.

The following data were obtained at 20∘C [M. F. Tam, J. A. Dodd, and W. E.

Hill, J. Biol. Chem. 256, 6430 (1981)].

D (×l07 cm2/s) s (S) V2(cm3∕g)

16S RNA 1.721 21.0 0.541

30S subunit 1.97 31.8 0.590

a. Calculate the molecular weights of 16S RNA and the 30S subunit. The

density of water under these conditions is 0.9982 g/cm3.

b. Calculate the effective Stokes’ radii of the 16S RNA and the 30S subunit

from the diffusion constant and sedimentation coefficient. The viscosity

of water at this temperature is 1.005 centipoise. What do you conclude

about the conformation of the isolated 16S RNA versus its conformation

in the 30S subunit?
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c. Calculate the ratio f/fsphere for 16S RNA and 30S subunit from the diffu-

sion constant. What can you conclude about the shape of 16S RNA and

30S subunit. (The calculations in this problem are somewhat simplified

relative to the original publication but the conclusions are the same.)

18-6. Aspartate transcarbamoylase is an enzyme that is important for the regulation

of pyrimidines (Chapter 17). It has an unusual subunit structure that could have

been determined by a combination of gel chromatography and SDS-PAGE. The

hypothetical results of such experiments are summarized as follows.

A gel filtration column was calibrated with the following proteins. The elu-

tion volumes can be assumed to be a linear function of the logarithm of the

molecular weight.

Protein Molecular weight Elution volume (ml)

Cytochrome c 12,400 208

Myoglobin 17,800 194

Chymotrypsinogen 25,000 185

Bovine serum albumin 66,200 152

Lactate dehydrogenase 140,000 127

𝛼-conarachin 295,000 102

Apoferritin 475,000 90

a. When aspartate transcarbamoylase was put through this column, it

eluted with a volume of 101 ml. What is the molecular weight of

aspartate transcarbamoylase?

b. The enzyme was reacted with a reagent that modifies sulfhydryl groups

and again passed through the gel filtration column. This time two peaks

emerged with elution volumes of 138 and 174 ml. What are the molec-

ular weights of these components?

c. Finally, aspartate transcarbamoylase was subjected to SDS-PAGE. The

following proteins were used to calibrate the gel.

Protein Molecular weight Gel migration (mm)

Lysozyme 14,400 88.0

𝛽-Lactoglobulin 18,400 78.2

Carbonic anhydrase 29,000 70.0

Lactate dehydrogenase 35,000 55.2

Ovalbumin 45,000 46.0

Bovine serum albumin 66,200 30.2

𝛽-galactosidase 116,000 10.0



PROBLEMS 439

Two bands were observed for aspartate transcarbamoylase with gel

migrations of 58.0 and 82.0 mm. What are the molecular weights of

these components?

On the basis of the aforementioned results, what can you say about the

subunit structure of aspartate transcarbamoylase?





CHAPTER 19

Mass Spectrometry

19.1 INTRODUCTION

The use of mass spectrometry in biology has become sufficiently prevalent that the

basic concepts and their applications merit consideration in this text. The basic vari-

able parameter in spectroscopy is wavelength, whereas in mass spectrometry, it is m/z,

the ratio of the mass of a particle to its charge. In very simple terms, a mass spectrom-

etry experiment can be divided into three main steps: ionization, mass analysis, and

ion detection. Although modern mass spectrometry experiments are more compli-

cated than suggested by this simple analysis, these three steps are always involved.

Importantly, the only environment in which ions are stable for a sufficient time to

analyze readily is a vacuum, and a good vacuum is an essential part of a mass spec-

trometer. This chapter constitutes an introduction to the field. More comprehensive

treatments can be found in Refs. 1–4.

19.2 MASS ANALYSIS

The basic principles underlying mass spectrometry can be understood by considering

the motion of a charged particle in electric and magnetic fields.

The kinetic energy of a charged particle in an electric field is given by the rela-

tionship
1

2
mv2 = zV (19-1)

where m is the mass, v is the velocity, z is the charge, and V is the applied voltage.

The trajectory of an ion in a magnetic field, H, is an arc of radius r, as shown in

Figure 19-1. The conservation of angular momentum requires that

mv2

r
= zvH (19-2)
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Magnet
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(m/z)

(m/z)′

FIGURE 19-1. Schematic representation of the trajectory of ions with different m/z values in

a magnetic field. In this illustration, m/z > (m/z)′.

Eliminating the velocity between these two equations gives

m
z
= H2r2

2V
(19-3)

This relationship shows that in constant magnetic and electric fields, the trajectory

will be the same for all ions with the same ratio m/z. Thus, if the magnetic and elec-

tric fields are kept constant, the mass spectrum can be collected by determining the

positions of the ions after they have passed through the magnetic field. Alternatively,

the magnetic field can be scanned to determine the mass spectrum. Note that only the

ratio m/z is determined, and multiply charged ions are commonly found.

The ultimate goal of the mass analysis is to determine m/z with the smallest pos-

sible error and to analyze a broad range of m/z. Unfortunately, these goals are often

in conflict so that several different methods of mass analysis are used. The resolution

of a mass spectrometer is defined as m/Δm. For example, a mass resolution of 1000

can distinguish between ions with m/z of 1000 and 1001.

The simplest type of mass spectrometer utilizes only a magnetic analyzer. As is

evident from Eq. (19-2), the path of an ion in a magnetic field is different for every

value of m/z. If Eq. (19-2) is solved for r, we find that

r =
(

1

H

)(
2mV

z

) 1
2

(19-4)

The path for two ions with different m/z passing through a magnetic field is included in

Figure 19-1. The resolution of the separation can be determined by taking the natural

logarithm of Eq. (19-4) and differentiating:

Δr
r

=
(

1

2

)(Δm
m

)
+
(

1

2

)(ΔV
V

)
(19-5)
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FIGURE 19-2. Schematic representation of a quadropole mass analyzer. The ions pass

through the middle of four parallel rods. The A rods are connected and have the same DC and

superimposed radiofrequency voltages. The B rods are also connected and have a DC voltage

opposite in sign to the A rods and the radiofrequency voltage phase shifted 180∘ relative to the

A rods.

Thus, in order to sharply focus the ions, thereby decreasing the error in m, it is impor-

tant for all ions to be homogeneous in energy, that is, the last term must be small.

This can be partially accomplished by using a high voltage (V), typically 8000 V, but

usually the magnetic focusing is coupled with an electrostatic analyzer in order to

produce ions that are homogeneous in energy (small ΔV). This can be done by sub-

jecting the ions to a constant voltage either prior or subsequent to the magnetic field.

Instruments of this type, double-focusing magnetic sector mass spectrometers, have

high resolution and a mass range up to about 15,000 Da. They are also very expensive.

The quadrupole mass spectrometer is a relatively low cost instrument in which

the separation of ions is accomplished by utilizing electric fields only. The mass ana-

lyzer consists of four metal rods, as shown in Figure 19-2. The trajectory of the ions

is between the four rods. The rods are electrically connected in pairs, A to A and B to

B in the figure. A constant voltage of opposite sign is applied to the A and B rods. An

oscillating voltage is superimposed on the constant voltage, with the phase differing

by 180∘ between A and B. The quadrupole serves as a mass filter: only ions with a

specified value of m/z can get through the filter. Other ions collide with the rods and

do not reach the detector. To obtain a mass spectrum, the applied electric fields are

varied, thus allowing ions with different values of m/z to be detected. The resolution

of quadrupole instruments is not as good as double-focusing magnetic sector instru-

ments, 10,000 versus 100,000, but it is significantly less expensive and can tolerate

relatively high pressures. The latter feature is important if the ions are generated by

electrospray, a frequently used technique that will be discussed later.
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The quadrupole mass spectrometer has been coupled with an “ion trap.” With these

instruments, the ions are held within the quadrupole and manipulated before proceed-

ing to the detector. By holding the ions in the trap, both time and space dimensions are

available. This improves the resolution and sensitivity. In simple terms, the ions are

physically trapped between electrodes and subjected to both constant and oscillating

electric fields such that ions of specific m/z precess within the trap. The magnitudes

of the fields are increased, thereby causing ions of specific m/z to be ejected from

the trap.

Modern instruments often couple linear ion traps or other ion sources with an

orbitrap (5). In an orbitrap, the ions are trapped because of an electrostatic attraction

to an inner electrode. When the voltage on the inner electrode is ramped up, the ions

begin to orbit in spiral packets because the electrostatic interaction is balanced by

a centrifugal force. Each packet has a unique m/z. These packets are detected on an

outer electrode and analysed with Fourier transform methods.

Ion mobility spectrometry also has been coupled to mass spectrometry. In ion

mobility spectrometers, ions drift down a tube in an electric field with an opposing

flow of inert gas. Separation occurs on the basis of molecular size and shape as the

ions move through the tube. A mass spectrometer is coupled to the end of this device

to provide spectra of these preselected species.

The time-of-flight mass spectrometer selects ions by measuring the time of arrival

of the ion at the detector. Equation 19-1 can be rearranged to give

v =
(

2Vz
m

) 1
2

(19-6)

This equation predicts that the lighter the ion, the faster it will arrive at the detector.

In order for this method to work, the ions must enter the flight tube at the same time.

This is accomplished by generating ions in short bursts. The difference in the time

of arrival of ions is not great, typically in the microsecond range. Thus, a complete

spectrum can be determined in very short times. In some cases, reflectors are used to

improve the sensitivity and resolution. This is done by slowing the ions with a series

of electric field “lenses” until they essentially stop and then accelerating them in the

opposite direction. The reflection increases the path length traveled, thus providing

better separation of the time of flight, and the lenses focus the ions with a specific

m/z by reducing the spread in kinetic energies for a given ion. The time-of-flight

instrument has the advantage of essentially unlimited mass range, parallel detection

of many ions, and high sensitivity.

Other methods exist for mass analysis but are not discussed in detail here. Most

notably, Fourier transform methods using ion cyclotron resonance have been devel-

oped that permit very high-precision mass determinations. The ions are inserted into

a small volume in the cyclotron, and a large magnetic field is applied so that the ions

precess in circular orbits according to Eq. (19-2). The ions are constrained to the cell

by an electric field applied to front and rear plates of the sample cell. If a pulsed

electric field is applied at a frequency matching the precession frequency of the ions,

energy is absorbed, analogous to a magnetic resonance experiment. The ions then

transmit a radio frequency current at the detector plates that contains the frequency
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TABLE 19-1. Characteristics of Mass Analyzers

Method Mass range (Da) Resolution

Magnetic sector 15,000 200,000

Quadrupole 4000 4000

Quadrupole ion trap 100,000 30,000

Time-of-flight Unlimited 15,000

Fourier transform ion >106
>106

Cyclotron resonance

Adapted from reference 3.

components of each of the ions. This is converted to a free ion decay signal (analo-

gous to the free induction decay in NMR) that can be Fourier transformed to the mass

spectrum of all of the ions, thus permitting detection over a wide mass range.

A summary of the various mass analyzers, along with their approximate range of

m/z and resolution, is given in Table 19-1.

19.3 TANDEM MASS SPECTROMETRY (MS/MS)

Tandem mass spectrometry couples two (or more) mass analyzers to obtain addi-

tional information about the sample in question. Three steps are typically involved in

MS/MS analysis: mass selection, fragmentation, and mass analysis. The first step is

the selection of a specific ion for further study. In the second step, the selected ion

then undergoes fragmentation, usually through collisions with neutral gas atoms. The

ion fragments are then analyzed by a second mass analyzer. Because modern ioniza-

tion methods produce very little fragmentation, the ion selected is often similar to

the ion of the parent compound. Selection of a specific ion and determination of its

fragmentation pattern may be important for its molecular identification.

A variety of different MS/MS instruments are available. For example, a triple

quadrupole instrument uses the first quadrupole for ion selection, the second for

collision-induced dissociation, and the third for analysis of the fragments produced.

Ion traps can also be incorporated at a relatively low cost. Similarly, multiple sector

instruments are available that use a series of magnetic and electric fields for analysis.

As might be expected, multiple sector instruments are quite expensive. Time-of-flight

and Fourier transform cyclotron resonance instruments are also available. The use

of MS/MS is particularly useful for biological systems to identify and characterize

substances uniquely.

19.4 ION DETECTORS

The two most common methods of detecting ions after they have been sorted by

the mass spectrometer are electron multipliers and photomultipliers. With electron

multipliers, the ion strikes a dynode that emits secondary electrons. Typical dynode
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surfaces are BeO, GaP, and CsSb. These secondary electrons are accelerated by a

voltage and attracted to a second dynode that emits more electrons. This process con-

tinues through a series of dynodes, resulting in a cascade of electrons. The resulting

current can be read with standard technology. Electron multipliers are very sensitive:

a signal amplification factor of 106 can be readily obtained.

Photomultiplier detectors operate in a similar fashion except that the ion first

strikes a phosphorous screen. The phosphorous screen releases photons, which are

detected by a photomultiplier. The photomultiplier also has a series of dynodes and

causes a cascade of electrons when the light strikes it. This type of detection is com-

monly called scintillation counting and is often used to measure radioactivity quanti-

tatively. The amplification factor is similar to electron multipliers. A major advantage

of photomultipliers is that they have significantly longer lifetimes than electron multi-

pliers. The lifetime of electron multipliers is limited by contamination/damage of the

surface that the ions strike. Nonetheless, electron multipliers are currently the most

common devices used.

Detection of the ion signal is often done by a point detector so that only a single

type of ion is detected, that is, a single m/z. However, array detectors are also available.

Array detectors consist of a linear arrangement of detectors so that multiple ions can

be detected simultaneously.

19.5 IONIZATION OF THE SAMPLE

The first step in the analysis is to ionize the sample into the vacuum of the mass

spectrometer. A variety of methods are used to ionize the sample, and we will deal

with only a few of them. Currently, the two most widely used methods for macro-

molecules are MALDI (matrix assisted laser desorption/ionization) and ESI (elec-

trospray ionization), but a few other methods that are commonly used for relatively

small molecules will also be discussed.

Electron impact ionization vaporizes the sample into the mass spectrometer and

then bombards the vapor with a beam of high-energy electrons, 50–100 eV. This is

typically accomplished by thermal evaporation from a probe containing the sample.

The high-energy electrons are produced from a filament and acceleration of the elec-

trons through a large electric field. In order to produce ions, the electrons must have

an energy greater than the ionization energy of the molecule, M, being studied. This

process can be written as

M + e− → M+⋅ + 2e− (19-7)

The positive ions formed, M+., are referred to as odd-electron molecular ions or radi-

cal cations. Because the ionization energy for most molecules is only about 5 eV, the

molecular ion produced usually has an excess of energy and fragments. The fragmen-

tation pattern provides a “fingerprint” for each molecule. Libraries of fragmentation

patterns are available for the identification of unknown compounds. The primary

drawback of this method is that relatively stable and volatile compounds are required.

In practice, this limits the molecular weight of samples to less than about 1000 Da.
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The technique of fast atom bombardment (FAB) was developed in the 1980s and

permits substances with molecular weights of 4000 or greater to be analyzed rou-

tinely. The principle of the method is to place a sample that is dissolved into a matrix

on the tip of a metal probe. The sample is then bombarded with a stream of fast (high

temperature) Ar or Xe atoms, and molecular ions are produced, predominately by the

loss or gain of an H atom. (In some cases, a beam of Cs+ is used.) The key to this

method is the matrix, which is a viscous liquid and relatively inert. Typical examples

are m-nitrobenzyl alcohol and glycerol. The sample is dissolved in a solvent that is

miscible with the matrix. The matrix absorbs most of the high-energy atoms and pro-

duces a high-temperature, high-density gas within a small volume. Various matrix

ions are produced, protonated, and deprotonated, and these react with the sample

molecule, M, to produce ions:

M + matrix − H+ → MH+ + matrix

MH + matrix− → M− + matrix − H (19-8)

Thus, both negative and positive sample ions are produced. The energy of the ions is

considerably less than that produced by electron ionization, but some fragmentation

occurs. A schematic representation of FAB is shown in Figure 19-3.

FAB has been largely replaced by MALDI, which is conceptually very similar

(Fig. 19-3). The sample is embedded in a matrix, and an external source is used to

convert the sample to ions. In the case of MALDI, the sample is embedded into a

solid crystalline compound, and a laser, operating at a wavelength at which the matrix

strongly absorbs, is used to desorb and ionize the sample. A laser with a high-energy

output is needed: both UV and IR lasers have been used. The matrix is essentially

a “solvent” for the sample, and the sample forms a microcrystal with the matrix. In

practice, the sample is dissolved into a small amount of solvent (water or water plus

Laser
(MALDI)

Light

Probe

Matrix/sample

Secondary ions

MA

Atom/ion beam

Atom/ion source
(FAB)

FIGURE 19-3. Schematic representation of FAB (right) and MALDI (left) methods of ion-

ization. In both cases, the sample is embedded in a matrix. In the case of FAB, the ions are

created by bombardment with an atom or ion beam, and in the case of MALDI by a pulsed

laser. The secondary ions are then injected into the mass analyzer.
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organic solvents, typically), and the sample is then mixed with a concentrated solu-

tion of the matrix. Just a picomole of sample is required, and the ratio of sample

to matrix is typically 1/1000. A variety of materials has been used for matrices, for

example, cinnamic acid, succinic acid, and urea. The mixture is then evaporated and

introduced into the mass spectrometer. Short laser pulses, typically 10–20 ns dura-

tion, with about 106 W/cm2 power are used. The exact mechanism for producing

ions is not well understood, but the general idea is that the matrix is ionized, and

the ions produced ionize the sample molecules through a series of proton transfer

reactions involving the matrix molecules and the analyte. As with FAB, both positive

and negative ions are produced. This method can be used to study macromolecules

with molecular weights in excess of 300,000 Da. Moreover, the sensitivity is excel-

lent, in the pico- to femtomole range, and little fragmentation occurs. A typical mass

spectrum of a protein obtained with MALDI is shown in Figure 19-4.

Finally, we consider ESI. With this method, a fine spray of highly charged droplets

is created by spraying the sample onto the tip of a metal nozzle at approximately

4000 volts. This is done at atmospheric pressure. The solvent is removed through a

series of Coulombic explosions. The droplets can also be heated to facilitate evapo-

ration. As a droplet becomes smaller, the electric field density increases, until finally

mutual repulsion between the ions causes the ions to leave the droplet. In essence,

the electrostatic forces become greater than the surface tension. The ions are then

directed into the mass analyzer with an electrostatic lens. An important and unique

characteristic of this method is that highly charged ions are produced so that a wide

range of m/z values are observed for a single analyte. For example, the mass spectrum

of myoglobin obtained with ESI is shown in Figure 19-5. If two adjacent peaks are

assumed to differ by only one charge and one proton, the molecular weight can be

calculated. This method can be used for molecules of about 100,000 Da or less and

has good sensitivity, in the pico to femtomole range.
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19.6 SAMPLE PREPARATION/ANALYSIS

Before discussing applications of mass spectrometry, some general comments

should be made. Table 19-2 summarizes the most frequently used methodology for

biomolecules. The amount of sample required depends on the specific methods used,

but generally 5–50 μl of 10–100 μM solutions are adequate. Frequently, a mass

spectrometer is coupled to purification procedures such as gas chromatography,

high-performance liquid chromatography, or capillary electrophoresis. This provides

a high throughput of samples and rapid analysis of unknown mixtures. In some

cases, an in-depth study of a single substance is carried out. In this case, the purity is

TABLE 19-2. Ionization Techniques for Biomolecules

Compound Ionization method Ionization mechanism

Peptides FAB, MALDI, and ESI Protonation, deprotonation

Proteins MALDI and ESI Protonation

Carbohydrates FAB, MALDI, and ESI Protonation, deprotonation, cationizationa

Oligonucleotides MALDI and ESI Protonation, deprotonation, cationizationa

Small biomolecules FAB, MALDI, and ESI Protonation, deprotonation, cationizationa,

electron ejection

Adapted from G.Sluzdak, Mass Spectrometry, Academic Press, San Diego, CA, 1996.
aAddition of a cation other than H+.



450 MASS SPECTROMETRY

important and extraneous background material should be eliminated, notably salts,

if possible.

In order to obtain accurate mass measurements with mass spectrometry, the instru-

ment must be calibrated with standard compounds. This is sometimes done by run-

ning a series of calibration curves, but the best procedure is to include an internal mass

standard with the sample. This will ensure that fluctuations in instrument response are

adequately taken into account. Mass measurements can be made to within 1–500 parts

per million. Thus, for example, the accuracy can be within a few tenths of a dalton

for a macromolecule of molecular weight of 100,000.

19.7 PROTEINS AND PEPTIDES

With the advent of soft ionization methods, the determination of the molecular weight

of proteins with mass spectrometry has become routine and has become the method

of choice because of its accuracy and the relatively small amount of material required

(femtomoles). The method works best if a pure protein is obtained by conventional

methods such as chromatography. With a pure protein, mass spectrometry, usually

with MALDI or ESI, can detect differences in a single amino acid quite readily.

Thus, for example, mass spectrometry is a confirmatory tool for site-specific muta-

genesis. Also if posttranslational modifications occur, such as phosphorylation or

carbohydrate addition, mass spectrometry can identify and in some cases quantify

the modification.

Proteomics is a rapidly developing field that systematically characterizes gene

products. Proteomics is concerned with determining the identities of proteins, both

known and unknown, and their functions. Tissues or fluids are subjected to protein

purification protocols, usually by simple chromatography or gel electrophoresis, and

the molecular masses and amino acid sequences of the proteins are then determined

by mass spectrometry. This represents the first step in the characterization of gene

products. Molecular weight by itself is rarely sufficient to identify a protein so that

once proteins have been identified and their molecular weight determined, further

studies are carried out. The next step is to take a specific protein, which could be a

spot taken from two-dimensional gel electrophoresis of the crude starting material,

and subject it to proteolysis with an enzyme such as trypsin. Before the use of mass

spectrometry, the resultant peptides had to be separated, often by laborious proce-

dures. However, with mass spectrometry, the trypsin digest can be analyzed directly

and the molecular weights of the peptides determined. Since proteins usually have a

unique digest, this procedure is often sufficient to determine what the starting protein

is. Data banks of trypsin digests for hundreds of proteins and sophisticated software

are available to help in the identification process. An example of the mass spectrum

of a mixture of peptides is shown in Figure 19-6.

Although molecular weight characterization of peptide fragments after proteol-

ysis is very useful for identifying proteins, the surest identification is to determine

the amino acid sequence of the peptides. The amino acid sequence of the protein can

then be compared with the vast database of known proteins. In addition to identifying
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C. Dass in B. S. Larsen and C. N. McEwen (eds), Mass Spectrometry of Biological Materials,
Marcel Dekker, New York, 1998, pp. 247–280.

specific proteins, the databases can be searched for homologous proteins, that is, pro-

teins with similar but not identical amino acid sequences.

Determining the sequence of a peptide with mass spectrometry is not as easy as

making molecular weight measurements. Basically, the principle is to use fragmenta-

tion of the parent peptide as a unique identifier of the sequence. The most frequently

used technology is tandem mass spectrometry. With this method, a single peptide

can be selected by the initial ion separation, and this peptide can then be subjected to

fragmentation and analysis by the second mass analyzer. The amino acid sequence of

peptides with molecular weights of up to about 3000 can be readily determined with

this technique. If the peptide is large, the amount of useful sequence information that

can be generated in the mass spectrometer is limited because of the complexity and

large number of fragments produced.

An effective strategy for amino acid sequencing is the use of peptide ladders. With

this methodology, a peptide is treated with an exopeptidase (carboxypeptidase or

aminopeptidase). These enzymes take off one amino acid at a time from the C- or

N-terminus. The products of these digestions are then analyzed with mass spectrom-

etry, and the reduction in molecular weight can be used to deduce the amino acid

sequence. An example of ladder sequencing is shown in Figure 19-7, where a pep-

tide from HIV protease was sequenced by degradation from the amino terminus. The

letter by each mass spectrum peak indicates the amino acid that was found on the

N-terminus as the peptide decreased in length (6).

The above sequence of events has not taken into account the fact that proteins

often contain disulfide linkages. If this is the case, the protein must first be subjected
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to a reduction process that converts the disulfides to cysteines, and the cysteines

are then typically alkylated so that the disulfides will not reform. Because the

molecular weights of the reduced/alkylated and oxidized enzymes are different,

mass spectrometry can be used to determine exactly how many disulfide linkages are

present.

Mass spectrometry can provide exact masses of proteins and other macro-

molecules. As the fields of genomics and proteomics expand, mass spectrometry

undoubtedly will be a central analytical technique for the characterization of gene

products. Both the methodology and database searching techniques are improving

rapidly.

19.8 PROTEIN FOLDING

We have previously discussed the transformation of proteins between native and dena-

tured states (Chapters 3, 11 and 14). Mass spectrometry provides a unique tool in

such studies. Proteins have many hydrogens that can exchange with water hydro-

gens. This is a dynamic process and takes place continuously in aqueous solution.

The amide hydrogens, that is, those associated with peptide bonds, are of particular

interest because their rate of exchange with the solvent is dependent on structure and

generally occurs over a time range that is readily accessible experimentally. All of

the amide hydrogens are replaced by deuterium at approximately the same rate when

a denatured protein is put into D2O. However, for native proteins the rate depends

on the environment of each amide hydrogen. For example, if the amide hydrogen is

involved in a stable 𝛼-helix, the rate of exchange will be slower than that if it is freely
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exposed to the solvent. Amide hydrogens directly exposed to the solvent exchange

rapidly with the solvent. The remaining amide hydrogens can be divided roughly into

two classes. One class exchanges due to the making and breaking of local structures:

this is often called breathing motions of the protein. The second, slower, exchanging

class of hydrogens is associated with the global structure of the protein. They usually

do not exchange unless the native structure is denatured. Within each of these classes,

subgroups can be found, especially the class associated with local structures (cf. Refs.

7 and 8 for reviews of this subject). For each subgroup, the exchange process can be

described by the mechanism

NHcl

kop

⇌
kcl

NHop

kint−−−→ND (19-9)

Here, NHcl and NHop are the closed and open forms of the protonated enzyme: closed

means hydrogen exchange cannot occur and open means hydrogen exchange can

occur. ND is the deuterated amide(s), and the rate constants are for the opening, clos-

ing, and exchange of the unprotected amide reactions. If the intermediate state is

assumed to be in a steady state, the rate constant for the overall exchange reaction is

kex =
kopkint

kcl + kint

(19-10)

Two limiting cases exist. If the rate constant for closure is much faster than the

rate constant for the replacement of hydrogen by deuterium (kcl ≫ kint), kex =
kopkint/kcl. If kint ≫ kcl, then kex = kop. These are called the EX2 and EX1 limits. In

the former case, because kex can be estimated from studies with model compounds,

the equilibrium constant kop/kcl can be calculated and is a direct measure of the

thermodynamic stability of the structural element under consideration.

If deuterium is substituted for hydrogen, the molecular weight of the protein

increases so that mass spectrometry is an excellent tool for studying hydro-

gen/deuterium exchange. NMR has also been used extensively because it can

monitor specific individual amide protons in a single experiment. However, it cannot

easily detect multiple populations of the same conformation. The combination

of NMR and mass spectrometry provides a powerful experimental approach to

the study of protein folding, but only a few selected examples studied with mass

spectrometry are considered here.

In the EX2 limit, the open and closed forms of the protein are in equilibrium

so that, as deuterium is substituted for hydrogen, only a single protein species of

increasing molecular weight is observed during the time course of exchange. The

starting protein species would have all amide hydrogens and the final protein species

all deuteriums, with intermediate species having a specific number of hydrogens and

deuteriums. This is shown schematically in Figure 19-8. In the EX1 limit, the opening

reaction is rate determining, with rapid exchange following. Therefore, two species

should be present during the time course of the exchange, one completely deuter-

ated and the other completely hydrogenated at the amide position. This situation is

also shown schematically in Figure 19-8. The shape of the mass spectrum peaks in
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FIGURE 19-8. Schematic representation of mass spectra for the EXI (a) and EX2 (b)

exchange limits midway through the hydrogen/deuterium exchange reaction. The mass of the

protein or peptide increases as the amide hydrogen is replaced by deuterium. In the EX1 limit,

each protein or peptide molecule has either all hydrogens or all deuterons, whereas in the EX2

limit, each protein or peptide molecule contains both hydrogens and deuterons.

the EX1 limit can provide information about correlated exchange reactions and other

reaction dynamics, but we will not discuss this more complex situation (8).

An extensive study of the incorporation of deuterium into rabbit muscle aldolase

has been carried out (9). The protein was incubated in D2O for a specified length of

time. The exchange reaction was quenched by lowering the pD to 2.5 and the temper-

ature to 0∘ C. Under these conditions, the rate of the exchange reaction (kex) becomes

very slow. Denaturant was used to increase the initial rate of exchange—it promotes

the formation of open forms. After quenching, the protein was proteolyzed with

pepsin, and the peptides were subjected to mass spectral analysis by ESI. The time

dependence of the exchange reaction was determined, and it was found that two differ-

ent peptides incorporated deuterium at different rates. Both protonated and deuterated

peptides were found, but intermediate states with both protons and deuterons were not

found. This indicated that the EX1 limit is operative. Thus, the mass spectra showed

that the EX1 mechanism of exchange was occurring and that the hydrogen/deuterium

exchange for the two peptides took place at different rates, indicating differences in

kinetic stability within the protein.

Mass spectrometry can also be used to study the exchange reaction in the EX2

limit which provides direct information about the thermodynamic stability of the pro-

tein. Mass spectrometry coupled with hydrogen exchange provides a means of rapidly

scanning a library of proteins for relative stability (10). The stability of overexpressed

proteins in crude cell lysates can also be assessed (11). In the latter case, the increase

in mass of the overexpressed protein after exposure to D2O for a fixed time was deter-

mined at different guanidine chloride concentrations. The reaction was quenched by

addition to a MALDI matrix. The increase in mass for a number of variants of the

protein 𝜆 repressor followed the typical sigmoidal behavior for a two-state denatura-

tion, and the relative stability of seven mutants was determined. The results correlated

well with those from circular dichroism measurements. The same method can be used

to estimate binding constants as ligand binding generally stabilizes the native protein

configuration. In addition, binding of a ligand or macromolecule may selectively alter



REFERENCES 455

the exchange rate for specific regions of the target protein, thus providing informa-

tion about the region of the protein involved in binding. The ability to rapidly screen

many samples is a unique advantage of mass spectrometry for such studies.

19.9 OTHER BIOMOLECULES

Although the mass spectrometry literature has been dominated by the study of pro-

teins in recent years, largely because of the genome project and proteomics, many

other biomolecules have been studied. Posttranslational modification of proteins is a

good example. After proteins are synthesized in the cell, they are often modified, for

example, by glycosylation and phosphorylation.

The attachment of a carbohydrate to a protein is often important for its function

and localization. Carbohydrates also play a significant role in the regulation of phys-

iological processes. Determination of the structure of glycoproteins is challenging,

and mass spectrometry can play an important role. If a protein is not homogeneous

with respect to glycosylation, multiple molecular weights will be observed. MALDI

is especially useful as it generally produces a single charged species and permits the

multiple species to be easily sorted. ESI produces multiple ions for each species but

has better mass resolution. The molecular mass of the attached carbohydrate can be

determined by treating the protein with glycosidases to free the protein of the carbo-

hydrate. If the extent of glycosylation is not great, the nature of the attached group can

sometimes be inferred directly. If similar experiments are carried out in conjunction

with peptide mapping (proteolysis and separation of peptides), the attachment sites

of the carbohydrate can be ascertained. Ultimately, sequencing of the carbohydrate is

required for complete characterization, and MS/MS methods are useful in this regard.

The coupling of database searching and mass spectrometry is a promising approach

for the characterization of carbohydrates. Although the characterization of carbohy-

drate structures is difficult and not yet well developed, its importance in biology is

well recognized (1–3).

Finally, mention should be made of the application of mass spectrometry to char-

acterizing oligonucleotides and lipids. In the case of lipids, it is a primary tool for

structural characterization of the many diverse types of lipids that occur in nature.

For nucleic acids, it is especially useful for determining modification of bases. We

also have not dwelt on the characterization of metabolites; mass spectrometry is a

tool of choice for small molecules because of the small amount of sample required

to obtain a complete structure. The field of metabolomics subjects complex mixtures

of metabolites obtained from physiological systems to mass spectrometry analysis to

identify individual metabolites under different physiological conditions. A parallel

field of lipidomics also exists that identifies individual lipids in complex mixtures.
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PROBLEMS

19-1. The mass spectrum of the enzyme lysozyme was determined using ESI, and

several positive ion peaks were observed. Peaks at m/z =1432 and 1592 were

found adjacent to each other. Calculate the molecular weight of lysozyme.

Assume that the charges are due to protonation of the protein and that z differs

by one unit for the two peaks.

19-2. A peptide was subjected to degradation from the N-terminus (Edman degra-

dation). The resultant mixture was subjected to MALDI/MS analysis. The fol-

lowing ladder of m/z was observed: 977.2, 1064.3, 1151.4, 1222.6, 1378.9, and

1465.9. Assume that z=1 in all cases and derive the sequence of the N-terminal

region of the peptide. The identical peptide was enzymatically phosphorylated

with protein kinase C. For this peptide, the ladder of m/z was as follows: 977.3,

1064.3, 1231.6, 1302.6, 1458.9, and 1545.9. Explain these results.

19-3. Derive an equation for the time of flight of an ion with a mass/charge ratio of

m/z that travels a distance L in the mass spectrometer. Calculate the time of

flight for a particle with m/z =200 amu that was accelerated by 3000 volts over

a distance of 30 cm. (Hint: Start with Eq. (19-6) in your derivation. Be careful

of the units in making your calculation.)

19-4. Avidin is a glycoprotein found in egg white. It binds an important biomolecule,

biotin, very tightly. Mass spectrometry of avidin using ESI displayed the usual

multiple-peak spectrum due to multiple charges on a single avidin molecule.

Two of the peaks had m/z values of 4002 and 4251. When the avidin was reacted

with biotin prior to mass spectrometry, these peaks had m/z values of 4058 and

4312. Determine how many molecules of biotin are bound per molecule of

avidin. The molecular weight of biotin is 244.
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APPENDIX 1

Useful Constants and Conversion
Factors

Avogadro’s number, N0 6.0221× 1023 mol−1

Gas constant, R 8.3144× 107 erg K−1 mol−1

8.3144 J K−1 mol−1

1.9872 cal K−1 mol−1

0.082057 l atm K−1 mol−1

Boltzmann’s constant, kB 1.3806× 10−23 J K−1 molecule−1

Planck’s constant, h 6.6262× 10−34J/s

Speed of light, c 2.9979× 108 ms−1

Standard gravity, g 9.8066 ms−2

Electronic charge, e 1.6022× 10−19 C

Electron mass, me 9.1094× 10−31 kg

Proton mass, mp 1.6276× 10−27 kg

Faraday constant, F 9.6485× 104 C/mol

1 calorie = 4.184 Joule

1 Joule = 107 erg =1 Volt-Coulomb

1 electron volt = 1.602× 10−19 Joule
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APPENDIX 2

Structures of the Common Amino
Acids at Neutral pH
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APPENDIX 3

Common Nucleic Acid Components
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APPENDIX 4

Standard Gibbs Energies and
Enthalpies of Formation at 298 K, 1
atm, pH 7, and 0.25 M Ionic Strength

Substance ΔGo (kJ/mol) ΔHo (kJ/mol)

ATP −2097.89 −2995.59

ADP −1230.12 −2005.92

AMP −360.29 −1016.88

Adenosine 529.96 −5.34

Pi −1059.49 −1299.39

Glucose-6-phosphate −1318.92 −2279.30

Glucose −426.71 −1267.11

H2O −155.66 −286.65

NADox 1059.11 −10.26

NADred 1120.09 −41.38

NADPox 1011.86 −6.57

NADPred 1072.95 −33.28

Acetaldehyde 24.06 −213.97

Acetate −247.82 −486.83

Alanine −85.64 −557.67

Ammonia 82.94 −133.74

Ethanol 62.96 −290.76

Pyruvate −350.78 −597.04

Formate −311.04 −425.55

Sucrose −667.85 −2208.90

Total CO2 −547.10 −692.88

2-Propanol 140.90 −334.11

Acetone 84.89 −224.17
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Substance ΔGo (kJ/mol) ΔHo (kJ/mol)

Glycerol −171.35 −679.84

Lactose −670.48 −2242.11

Maltose −677.84 −2247.09

Succinate −530.62 −908.68

Fumarate −523.58 −776.57

Lactate −313.70 −688.28

Glycine −176.08 −525.05

Urea −39.73 −319.29

Ribulose −328.28 −1027.12

Fructose −426.32 −1264.31

Ribose −331.13 −1038.10

Ribose 5-phosphate −1219.22 −2042.40

Aspartate −452.10 −945.46

Glutamate −372.16 −982.77

Glutamine −120.36 −809.11

Citrate −966.23 −1513.66

Isocitrate −959.58 —

cis-Aconitate −802.12 —

Malate −682.83 —

2-Oxoglutarate −633.59 —

Oxalosuccinate −979.06 —

Oxaloacetate −714.99 —

Glycerol 3-phosphate −1077.14 —

Fructose 6-phosphate −1315.74 —

Glucose 1-phosphate −1311.89 —

CO2(g) −394.36 −393.51

O2(g) 0 0

O2(aq) 16.40 −11.70

H2(g) 81.53 −0.82

H2(aq) 99.13 −5.02

This table is based on the conventions that ΔGo =ΔHo = 0 for the species H+, adenosine,

NAD−, and NADP3− at zero ionic strength.

Data are obtained from R. A. Alberty, Arch. Biochem. Biophys. 353, 116 (1998).



APPENDIX 5

Standard Gibbs Energy and Enthalpy
Changes for Biochemical Reactions at
298 K, 1 atm, pH 7.0, pMg 3.0, and
0.25 M Ionic Strength

Reaction ΔG∘ (kJ/mol) ΔH∘ (kJ/mol)

ATP+H2O⇌ADP+ Pi −32.48 −30.88

ADP+H2O⇌AMP+ Pi −32.80 −28.86

AMP+H2O⇌ adenosine+Pi −13.55 −1.22

2 ADP⇌ATP+AMP −0.31 +2.02

G6P+H2O⇌Glu+Pi −11.61 −0.50

ATP+Glu⇌ADP+G6P −20.87 −30.39

Data from R. A. Alberty, Arch. Biochem. Biophys. 353, 116 (1998).
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APPENDIX 6

Introduction to Electrochemistry

A6-1 INTRODUCTION

Electrochemistry is an active field of modern research. It is also important in a practi-

cal sense for batteries, solar cells, and other energy conversion devices. The world of

biology involves many redox reactions, as well as ion transport through membranes

and electrical conduction in the nervous system. This appendix is intended to serve as

an introduction to the basic concepts underlying electrochemistry and their linkages

to thermodynamics.

A6-2 GALVANIC CELLS

Many of the fundamental ideas and definitions underlying electrochemistry can be

illustrated by considering the galvanic cell shown in Figure A6-1. In this cell, metal-

lic zinc is inserted into a solution of ZnSO4 in one beaker and metallic copper is

inserted into a solution of CuSO4 in another beaker. The two solutions are connected

electrically through a salt bridge such as Na2SO4 held in the U tube with fritted disks

or a gel. When an electrical connection is established through the two electrodes, a

voltage of approximately 1.1 volts is observed if the concentrations of salts in the two

beakers are equal. This voltage or electrochemical potential is designated by a script

E, 𝜀. The voltage results from Zn metal being converted to Zn2+ at the Zn electrode

(oxidation) and Cu2+ being converted to Cu metal at the other electrode (reduction).

The electrode at which oxidation occurs is called the anode, and the electrode at

which reduction occurs is called the cathode. Electrons flow from the anode to the

cathode, and to preserve electroneutrality anions flow from the CuSO4 solution to the

ZnSO4 solution. The two electrochemical reactions occurring are:

Zn → Zn2+ + 2e− (A6-1)

Cu2+ + 2e− → Cu (A6-2)
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Zn SALT BRIDGE Cu

ZnSO4 CuSO4

FIGURE 6-1. Galvanic cell with metallic Zn and Cu electrodes in solutions of ZnSO4 and

CuSO4. The solutions are connected by a salt bridge containing Na2SO4. A voltage measuring

device is inserted in the connection between the two electrodes. Galvanic cells today are more

compact than this illustration and utilize modern materials.

The overall chemical reaction is

Zn(s) + Cu2+(aq) ⇄ Zn2+(aq) + Cu(s) (A6-3)

Why does the reaction proceed this way rather than the reverse? This is due to the

intrinsic properties of the metal ions: Zn is more easily oxidized than Cu.

The convention for describing this cell is

Zn|ZnSO4(m1)||CuSO4(m2)|Cu

The single line designates a phase boundary, in this case metal/solution, and the dou-

ble lines denote the salt bridge. The solution concentrations are shown within the

parentheses.

The Gibbs energy associated with this cell is the electrical work done per mole,

− nF𝜀, where n is the number of electrons being transferred, and F is the Faraday

constant. A word of caution: as the cell is described, it is not a reversible system. To

make this a reversible system, an external voltage would have to be provided that just

balances the voltage produced. The system is then at equilibrium with no net flow

of electrons, and the usual thermodynamic concepts can be applied. Also this is a

vastly simplified discussion of the galvanic cell. In reality potentials exist at all of the

interfaces; however, we will not be concerned about these details.
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A6-3 STANDARD ELECTROCHEMICAL POTENTIALS

Only differences in voltage can be measured experimentally, just as only differences

in Gibbs energy can be measured. Moreover, the voltage observed is dependent on the

ionic concentrations. To create an absolute scale of electrochemical potentials, two

arbitrary assumptions are necessary. First, standard conditions must be established.

The standard conditions are an activity of unity for the ions in the cell, a pressure

of one bar, and constant temperature, usually taken as 25∘C. The zero of the elec-

trochemical potential is taken as the electrochemical potential for the reduction of

hydrogen ion to hydrogen gas:

H+(aq) + e− →
1

2
H2(g)

Making an electrode from hydrogen gas clearly is not feasible. Instead the electrode

is made out of a material such as platinum and hydrogen gas is bubbled by it. Why

platinum? First, it catalyzes the reduction reaction, and second, the electrochemical

potential for the reduction of Pt is much less favorable (more negative) than for the

reduction of H2(g). This half cell can be represented as

Pt|H2(g,P)|HCl(aq,m)

The standard conditions for this half cell are an activity of unity for H+ (aq) and a

pressure of 1 bar for H2(g). We have indicated that an activity of unity is the standard

state. Obviously we cannot equate activity and concentration at such a high concen-

tration so the assumption is made that activity and concentration are equal at low

concentrations and the activity is then extrapolated to unity. We will not dwell on the

procedure for doing this. The hydrogen electrode described above is no longer used.

It has been replaced by a variety of glass electrodes that are sensitive to hydrogen ion

concentration and can be used to measure pH.

Tables of standard electrochemical potentials, 𝜀o, are available and can be uti-

lized to calculate the standard electrochemical potentials of many different cells.

For the reaction in Eq. (A6-1), 𝜀o is 0.762 volts, and for the reaction in Eq. (A6-2),

𝜀
o = 0.342 volts. Thus the standard electrochemical potential for the galvanic cell

discussed above is 1.104 volts.

As a second example of an electrochemical cell, consider the following:

Fe|FeCl3(a = 1)||CuCl2(a = 1)|Cu

The two electrode reactions are

Fe → Fe3+ + 3e− 𝜀
o = 0.037V

Cu2+ + 2e− → Cu 𝜀
o = 0.342V
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To write the overall reaction, the number of electrons must be balanced, so the first

equation is multiplied by 2 and the second by 3 to give an equal number of electrons

transferred for each half reaction. However, the standard voltages are not multiplied

by these coefficients. The result is

2Fe + 3Cu2+ ⇄ 2Fe3+ + 3Cu 𝜀
o = 0.379V

The standard potential would be the same if the stoichiometric coefficients were

divided or multiplied by integers: clearly the voltage cannot be dependent on how the

reaction is written. On the other hand, the magnitude of the standard Gibbs energy

change is dependent on how the reaction is written since ΔGo = −nF𝜀o. As the reac-

tion is written, six electrons are transferred so n= 6.

A6-4 CONCENTRATION DEPENDENCE OF THE ELECTROCHEMICAL
POTENTIAL

The concentration dependence of the electrochemical potential can be easily derived

from previous thermodynamic considerations. The change in the partial molar Gibbs

energy, ΔG, or chemical potential for a chemical reaction is related to the concentra-

tions by the relationship (Eq. (2-35))

ΔG = ΔGo + RT ln Q (A6-4)

Here Q is the ratio of the product activities over the reactant activities with each

activity raised to the power of its stoichiometric coefficient in the balanced chemi-

cal equation. From our discussion above, ΔG = −nF𝜀 and ΔGo = −nF𝜀o. If these

relationships are substituted into Eq. (A6-4), the Nernst equation is obtained:

𝜀 = 𝜀
o − RT

nF
ln Q (A6-5)

This Nernst equation gives the dependence of the electrochemical cell on concentra-

tion. For the Zn/Cu electrochemical cell discussed above,

𝜀 = 𝜀
o − RT

nF
ln

([
Zn2+]
[Cu2+]

)

Here concentrations have been substituted for activities, and the activities of the metal

electrodes have been set equal to 1. In practice, the substitution of concentrations for

activities is valid up to about 10−3 m. Deviations from Nernst’s law provide a method

for determining activity coefficients. Nernst’s law is frequently written in terms of

the base 10 logarithm with T= 298 K. In this case,

𝜀 = 𝜀
o −

(
0.0591

n

)
log Q
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Note that at equilibrium, 𝜀= 0 and 𝜀
o = (RT∕nF) ln K, where K is the equilibrium

constant. Thus electrochemical cells can be used to determine equilibrium constants

for redox reactions.

Finally we note that entropy and enthalpy changes for the electrochemical cell

reaction can be determined from the temperature dependence of the electrochemical

potential. Since (𝜕ΔG/𝜕T)P =−ΔS, ΔS = nF (𝜕𝜀/𝜕T)P. The enthalpy of reaction can

be obtained from the relationship, ΔH=ΔG+ T ΔS.

A6-5 BIOCHEMICAL REDOX REACTIONS

Thus far we have considered only redox reactions involving metals ions. However, the

same basic concepts apply to all redox reactions. For example, alcohol dehydrogenase

catalyzes the oxidation of alcohol to acetaldehyde by NAD+. The overall reaction is

C2H5OH + NAD+ ⇄ CH3CHO + NADH + H+

The standard electrode potentials for the two half reactions at pH 7.0 are:

C2H5OH → CH3CHO + 2e− + 2H+
𝜀

o = 0.193

NAD+ + H+ + 2e− → NADH 𝜀
o = −0.324

Biochemists use the convention that the activity of H+ is unity at pH 7.0 so

that H+ does not explicitly appear in the equilibrium constants at pH 7.0.

The standard potential for the alcohol dehydrogenase reaction is –0.131 V

and K = exp(𝜀onF/RT)= [CH3CHO][NADH]/([C2H5OH][NAD+])= 3.72× 10−5.

Physiologically, the acetaldehyde is rapidly metabolized to acetate by aldehyde

dehydrogenase. The acetate is ultimately broken down into H2O and CO2 to

complete the pathway for the metabolic breakdown of alcohol,

More extensive discussions of electrochemistry and redox chemistry are available

in the references given below.
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preparative centrifugation, 425–7

principle of detailed balance, 113

probability density, 158

processive reaction, 241
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circular dichroism of, 257–9

optical rotary dispersion of, 257–9

ultraviolet spectra of, 228–30

P–V isotherm, 8

quadropole mass analyzer, 443

quantum chemistry of biological systems,

194–200

global minimum, 196

local minima, 196

quantum dynamics, 358

quantum mechanical/molecular mechanical

(QM/MM) methods, 374

quantum mechanics, 155–75, See also
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Schrödinger equation, 158–9

tunneling, 165–7
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quantum mechanics (Continued)

vibrational motions, 162–5

quantum yield, 238

radial distribution function, 180
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Raman scattering, 279

Raman spectroscopy, 279–81
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Raoult’s law, 82

rate constants, 101
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transition state theory, 109
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first-order kinetics, 102
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rates

reaction enthalpies, 16–18

temperature dependence of, 18–19
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reaction mechanisms, 105–8

elementary steps, 105
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near equilibrium, 114–16

RecBCD, helicase activity monitored by

fluorescence, 240–241

relaxation times, 298–300

renaturation, 142–8

residual dipolar coupling (RDC), 303

resonance Raman spectroscopy, 280, 283–6
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Schrödinger equation, 158–9
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tandem mass spectrometry (MS/MS), 445

temperature, 4

Celsius temperature scale, 4

Kelvin temperature scale, 4

temperature dependence of Gibbs energy,

35–6

temperature dependence of the reaction

enthalpy, 18–19
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thermodynamics, 28–9, 77–94
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